Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2310223120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844243

RESUMO

Physical laws-such as the laws of motion, gravity, electromagnetism, and thermodynamics-codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena-for example, falling apples and orbiting moons or hot objects and compressed springs-has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection-static persistence, dynamic persistence, and novelty generation-that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a "law of increasing functional information": The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.

2.
Phys Rev Lett ; 131(11): 111004, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774289

RESUMO

Axions can be copiously produced in localized regions of neutron star magnetospheres where the ambient plasma is unable to efficiently screen the induced electric field. As these axions stream away from the neutron star they can resonantly transition into photons, generating a large broadband contribution to the neutron star's intrinsic radio flux. In this Letter, we develop a comprehensive end-to-end framework to model this process from the initial production of axions to the final detection of radio photons, and derive constraints on the axion-photon coupling, g_{aγγ}, using observations of 27 nearby pulsars. We study the modeling uncertainty in the sourced axion spectrum by comparing predictions from 2.5 dimensional particle-in-cell simulations with those derived using a semianalytic model; these results show remarkable agreement, leading to constraints on the axion-photon coupling that typically differ by a factor of no more than ∼2. The limits presented here are the strongest to date for axion masses 10^{-8} eV≲m_{a}≲10^{-5} eV, and crucially do not rely on the assumption that axions are dark matter.

3.
Proc Natl Acad Sci U S A ; 120(41): e2307149120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748080

RESUMO

The search for definitive biosignatures-unambiguous markers of past or present life-is a central goal of paleobiology and astrobiology. We used pyrolysis-gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method's utility for detecting alien biology.


Assuntos
Carbono , Emigrantes e Imigrantes , Humanos , Exobiologia , Fósseis , Aprendizado de Máquina
4.
PNAS Nexus ; 2(5): pgad110, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200799

RESUMO

The locations of minerals and mineral-forming environments, despite being of great scientific importance and economic interest, are often difficult to predict due to the complex nature of natural systems. In this work, we embrace the complexity and inherent "messiness" of our planet's intertwined geological, chemical, and biological systems by employing machine learning to characterize patterns embedded in the multidimensionality of mineral occurrence and associations. These patterns are a product of, and therefore offer insight into, the Earth's dynamic evolutionary history. Mineral association analysis quantifies high-dimensional multicorrelations in mineral localities across the globe, enabling the identification of previously unknown mineral occurrences, as well as mineral assemblages and their associated paragenetic modes. In this study, we have predicted (i) the previously unknown mineral inventory of the Mars analogue site, Tecopa Basin, (ii) new locations of uranium minerals, particularly those important to understanding the oxidation-hydration history of uraninite, (iii) new deposits of critical minerals, specifically rare earth element (REE)- and Li-bearing phases, and (iv) changes in mineralization and mineral associations through deep time, including a discussion of possible biases in mineralogical data and sampling; furthermore, we have (v) tested and confirmed several of these mineral occurrence predictions in nature, thereby providing ground truth of the predictive method. Mineral association analysis is a predictive method that will enhance our understanding of mineralization and mineralizing environments on Earth, across our solar system, and through deep time.

5.
J R Soc Interface ; 20(199): 20220810, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751931

RESUMO

The concepts that we generally associate with the field of data science are strikingly descriptive of the way that life, in general, processes information about its environment. The 'information life cycle', which enumerates the stages of information treatment in data science endeavours, also captures the steps of data collection and handling in biological systems. Similarly, the 'data-information-knowledge ecosystem', developed to illuminate the role of informatics in translating raw data into knowledge, can be a framework for understanding how information is constantly being transferred between life and the environment. By placing the principles of data science in a broader biological context, we see the activities of data scientists as the latest development in life's ongoing journey to better understand and predict its environment. Finally, we propose that informatics frameworks can be used to understand the similarities and differences between abiotic complex evolving systems and life.


Assuntos
Células , Ciência de Dados
6.
Geosci Data J ; 8(1): 74-89, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34158935

RESUMO

Minerals contain important clues to understanding the complex geologic history of Earth and other planetary bodies. Therefore, geologists have been collecting mineral samples and compiling data about these samples for centuries. These data have been used to better understand the movement of continental plates, the oxidation of Earth's atmosphere and the water regime of ancient martian landscapes. Datasets found at 'RRUFF.info/Evolution' and 'mindat.org' have documented a wealth of mineral occurrences around the world. One of the main goals in geoinformatics has been to facilitate discovery by creating and merging datasets from various scientific fields and using statistical methods and visualization tools to inspire and test hypotheses applicable to modelling Earth's past environments. To help achieve this goal, we have compiled physical, chemical and geological properties of minerals and linked them to the above-mentioned mineral occurrence datasets. As a part of the Deep Time Data Infrastructure, funded by the W.M. Keck Foundation, with significant support from the Deep Carbon Observatory (DCO) and the A.P. Sloan Foundation, GEMI ('Global Earth Mineral Inventory') was developed from the need of researchers to have all of the required mineral data visible in a single portal, connected by a robust, yet easy to understand schema. Our data legacy integrates these resources into a digestible format for exploration and analysis and has allowed researchers to gain valuable insights from mineralogical data. GEMI can be considered a network, with every node representing some feature of the datasets, for example, a node can represent geological parameters like colour, hardness or lustre. Exploring subnetworks gives the researcher a specific view of the data required for the task at hand. GEMI is accessible through the DCO Data Portal (https://dx.deepcarbon.net/11121/6200-6954-6634-8243-CC). We describe our efforts in compiling GEMI, the Data Policies for usage and sharing, and the evaluation metrics for this data legacy.

7.
Astrophys J Lett ; 907(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33959247

RESUMO

Cluster analysis of presolar silicon carbide grains based on literature data for 12C/13C, 14N/15N, δ 30Si/28Si, and δ 29Si/28Si including or not inferred initial 26Al/27Al data, reveals nine clusters agreeing with previously defined grain types but also highlighting new divisions. Mainstream grains reside in three clusters probably representing different parent star metallicities. One of these clusters has a compact core, with a narrow range of composition, pointing to an enhanced production of SiC grains in asymptotic giant branch (AGB) stars with a narrow range of masses and metallicities. The addition of 26Al/27Al data highlights a cluster of mainstream grains, enriched in 15N and 26Al, which cannot be explained by current AGB models. We defined two AB grain clusters, one with 15N and 26Al excesses, and the other with 14N and smaller 26Al excesses, in agreement with recent studies. Their definition does not use the solar N isotopic ratio as a divider, and the contour of the 26Al-rich AB cluster identified in this study is in better agreement with core-collapse supernova models. We also found a cluster with a mixture of putative nova and AB grains, which may have formed in supernova or nova environments. X grains make up two clusters, having either strongly correlated Si isotopic ratios or deviating from the 2/3 slope line in the Si 3-isotope plot. Finally, most Y and Z grains are jointly clustered, suggesting that the previous use of 12C/13C = 100 as a divider for Y grains was arbitrary. Our results show that cluster analysis is a powerful tool to interpret the data in light of stellar evolution and nucleosynthesis modeling and highlight the need of more multi-element isotopic data for better classification.

8.
Am Mineral ; 106(3): 325-350, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33867542

RESUMO

Information-rich attributes of minerals reveal their physical, chemical, and biological modes of origin in the context of planetary evolution, and thus they provide the basis for an evolutionary system of mineralogy. Part III of this system considers the formation of 43 different primary crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed in environments with high dust/gas ratios during an interval of planetesimal accretion and differentiation between 4566 and 4561 Ma. Chondrule mineralogy is complex, with several generations of initial droplet formation via various proposed heating mechanisms, followed in many instances by multiple episodes of reheating and partial melting. Primary chondrule mineralogy thus reflects a dynamic stage of mineral evolution, when the diversity and distribution of natural condensed solids expanded significantly.

9.
Nat Commun ; 10(1): 911, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796215

RESUMO

Rocks of Ediacaran age (~635-541 Ma) contain the oldest fossils of large, complex organisms and their behaviors. These fossils document developmental and ecological innovations, and suggest that extinctions helped to shape the trajectory of early animal evolution. Conventional methods divide Ediacaran macrofossil localities into taxonomically distinct clusters, which may represent evolutionary, environmental, or preservational variation. Here, we investigate these possibilities with network analysis of body and trace fossil occurrences. By partitioning multipartite networks of taxa, paleoenvironments, and geologic formations into community units, we distinguish between biostratigraphic zones and paleoenvironmentally restricted biotopes, and provide empirically robust and statistically significant evidence for a global, cosmopolitan assemblage unique to terminal Ediacaran strata. The assemblage is taxonomically depauperate but includes fossils of recognizable eumetazoans, which lived between two episodes of biotic turnover. These turnover events were the first major extinctions of complex life and paved the way for the Cambrian radiation of animals.


Assuntos
Extinção Biológica , Fósseis/anatomia & histologia , Paleontologia/métodos , Animais , Evolução Biológica
10.
Proc Natl Acad Sci U S A ; 115(20): 5217-5222, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29686079

RESUMO

Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski's Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian-Triassic, Cretaceous-Paleogene, Devonian, and Triassic-Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations.


Assuntos
Biodiversidade , Bases de Dados Factuais , Ecossistema , Extinção Biológica , Fósseis , Paleontologia , Animais , Evolução Biológica , Geologia , Invertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA