Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Plant Sci ; 15: 1408356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974981

RESUMO

A low-input-based farming system can reduce the adverse effects of modern agriculture through proper utilization of natural resources. Modern varieties often need to improve in low-input settings since they are not adapted to these systems. In addition, rice is one of the most widely cultivated crops worldwide. Enhancing rice performance under a low input system will significantly reduce the environmental concerns related to rice cultivation. Traits that help rice to maintain yield performance under minimum inputs like seedling vigor, appropriate root architecture for nutrient use efficiency should be incorporated into varieties for low input systems through integrated breeding approaches. Genes or QTLs controlling nutrient uptake, nutrient assimilation, nutrient remobilization, and root morphology need to be properly incorporated into the rice breeding pipeline. Also, genes/QTLs controlling suitable rice cultivars for sustainable farming. Since several variables influence performance under low input conditions, conventional breeding techniques make it challenging to work on many traits. However, recent advances in omics technologies have created enormous opportunities for rapidly improving multiple characteristics. This review highlights current research on features pertinent to low-input agriculture and provides an overview of alternative genomics-based breeding strategies for enhancing genetic gain in rice suitable for low-input farming practices.

2.
J Cell Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775127

RESUMO

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

3.
Theor Appl Genet ; 136(12): 247, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975911

RESUMO

Wheat, an important cereal crop globally, faces major challenges due to increasing global population and changing climates. The production and productivity are challenged by several biotic and abiotic stresses. There is also a pressing demand to enhance grain yield and quality/nutrition to ensure global food and nutritional security. To address these multifaceted concerns, researchers have conducted numerous meta-QTL (MQTL) studies in wheat, resulting in the identification of candidate genes that govern these complex quantitative traits. MQTL analysis has successfully unraveled the complex genetic architecture of polygenic quantitative traits in wheat. Candidate genes associated with stress adaptation have been pinpointed for abiotic and biotic traits, facilitating targeted breeding efforts to enhance stress tolerance. Furthermore, high-confidence candidate genes (CGs) and flanking markers to MQTLs will help in marker-assisted breeding programs aimed at enhancing stress tolerance, yield, quality and nutrition. Functional analysis of these CGs can enhance our understanding of intricate trait-related genetics. The discovery of orthologous MQTLs shared between wheat and other crops sheds light on common evolutionary pathways governing these traits. Breeders can leverage the most promising MQTLs and CGs associated with multiple traits to develop superior next-generation wheat cultivars with improved trait performance. This review provides a comprehensive overview of MQTL analysis in wheat, highlighting progress, challenges, validation methods and future opportunities in wheat genetics and breeding, contributing to global food security and sustainable agriculture.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Fenótipo , Produtos Agrícolas/genética , Grão Comestível/genética
4.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37935566

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS: The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS: Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS: In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/uso terapêutico , Citoplasma/metabolismo , Citoplasma/patologia , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo , Poli C/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Microambiente Tumoral
5.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37922327

RESUMO

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Assuntos
Neoplasias Ósseas , Melanoma , Neoplasias da Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Metástase Neoplásica
6.
Mol Cancer Ther ; 22(10): 1115-1127, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721536

RESUMO

Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.


Assuntos
Melanoma , Animais , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Sinteninas/química , Transdução de Sinais , Peptídeos/metabolismo
7.
Front Plant Sci ; 14: 1214907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534296

RESUMO

Aflatoxin (AF) contamination, caused by Aspergillus flavus, compromises the food safety and marketability of commodities, such as maize, cotton, peanuts, and tree nuts. Multigenic inheritance of AF resistance impedes conventional introgression of resistance traits into high-yielding commercial maize varieties. Several AF resistance-associated quantitative trait loci (QTLs) and markers have been reported from multiple biparental mapping and genome-wide association studies (GWAS) in maize. However, QTLs with large confidence intervals (CI) explaining inconsistent phenotypic variance limit their use in marker-assisted selection. Meta-analysis of published QTLs can identify significant meta-QTLs (MQTLs) with a narrower CI for reliable identification of genes and linked markers for AF resistance. Using 276 out of 356 reported QTLs controlling resistance to A. flavus infection and AF contamination in maize, we identified 58 MQTLs on all 10 chromosomes with a 66.5% reduction in the average CI. Similarly, a meta-analysis of maize genes differentially expressed in response to (a)biotic stresses from the to-date published literature identified 591 genes putatively responding to only A. flavus infection, of which 14 were significantly differentially expressed (-1.0 ≤ Log2Fc ≥ 1.0; p ≤ 0.05). Eight MQTLs were validated by their colocalization with 14 A. flavus resistance-associated SNPs identified from GWAS in maize. A total of 15 genes were physically close between the MQTL intervals and SNPs. Assessment of 12 MQTL-linked SSR markers identified three markers that could discriminate 14 and eight cultivars with resistance and susceptible responses, respectively. A comprehensive meta-analysis of QTLs and differentially expressed genes led to the identification of genes and makers for their potential application in marker-assisted breeding of A. flavus-resistant maize varieties.

8.
Plant Dis ; 107(6): 1847-1860, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37311158

RESUMO

Stem rust is one of the major diseases threatening wheat production globally. To identify novel resistance quantitative trait loci (QTLs), we performed 35K Axiom Array SNP genotyping assays on an association mapping panel of 400 germplasm accessions, including Indian landraces, in conjunction with phenotyping for stem rust at seedling and adult plant stages. Association analyses using three genome wide association study (GWAS) models (CMLM, MLMM, and FarmCPU) revealed 20 reliable QTLs for seedling and adult plant resistance. Among these 20 QTLs, five QTLs were found consistent with three models, i.e., four QTLs on chromosome 2AL, 2BL, 2DL, and 3BL for seedling resistance and one QTL on chromosome 7DS for adult plant resistance. Further, we identified a total of 21 potential candidate genes underlying QTLs using gene ontology analysis, including a leucine rich repeat receptor (LRR) and P-loop nucleoside triphosphate hydrolase, which have a role in pathogen recognition and disease resistance. Furthermore, four QTLs (Qsr.nbpgr-3B_11, QSr.nbpgr-6AS_11, QSr.nbpgr-2AL_117-6, and QSr.nbpgr-7BS_APR) were validated through KASP located on chromosomes 3B, 6A, 2A, and 7B. Out of these QTLs, QSr.nbpgr-7BS_APR was identified as a novel QTL for stem rust resistance which has been found effective in both seedling as well as the adult plant stages. Identified novel genomic regions and validated QTLs have the potential to be deployed in wheat improvement programs to develop disease resistant varieties for stem rust and can diversify the genetic basis of resistance.


Assuntos
Basidiomycota , Plântula , Mapeamento Cromossômico , Plântula/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Basidiomycota/genética , Resistência à Doença/genética , Doenças das Plantas/genética
9.
Funct Integr Genomics ; 23(2): 169, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209309

RESUMO

Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética , Genótipo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Resistência à Doença/genética
10.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166702, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044238

RESUMO

Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin ß1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.


Assuntos
Neoplasias da Mama , Integrina beta1 , Feminino , Humanos , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina beta1/metabolismo
11.
BMC Plant Biol ; 22(1): 618, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36577935

RESUMO

BACKGROUND: During the last few decades, the diverse sources of resistance, several genes and QTLs for spot blotch resistance have been identified. However, a large set of germplasm lines are still unexplored that have the potential to develop highly resistant wheat cultivars for the target environments. Therefore, the identification of new sources of resistance to spot blotch is essential for breeding programmes to develop spot blotch resistant cultivars and sustain wheat production. The association mapping panel of 294 diverse bread wheat accessions was used to explore new sources of spot blotch disease resistance and to identify genomic regions using genome wide association analysis (GWAS). The genotypes were tested in replicated trials for spot blotch disease at three major hot spots in India (Varanasi in UP, Pusa in Bihar, and Cooch Behar in West Bengal). The area under the disease progress curve (AUDPC) was calculated to assess the level of resistance in each genotype. RESULTS: A total of 19 highly and 76 moderately resistant lines were identified. Three accessions (EC664204, IC534306 and IC535188) were nearly immune to spot blotch disease. The genotyping of all accessions resulted in a total of 16,787 high-quality polymorphic SNPs. The GWAS was performed using a Compressed Mixed Linear Model (CMLM) and a Mixed Linear Model (MLM). A total of seven significant MTAs, common in both the models and consistent across the environment, were further validated to develop KASP markers. Four MTAs (AX-94710084, AX-94865722, AX-95135556, and AX-94529408) on three chromosomes (2AL, 2BL, and 3BL) have been successfully validated through the KASP marker. CONCLUSIONS: The new source of resistance was identified from unexplored germplasm lines. The genomic regions identified through GWAS were validated through KASP markers. The marker information and the highly resistant sources are valuable resources to rapidly develop immune or near immune wheat varieties.


Assuntos
Ascomicetos , Resistência à Doença , Resistência à Doença/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Alelos , Ascomicetos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Doenças das Plantas/genética
12.
Front Oncol ; 12: 812560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402258

RESUMO

melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.

13.
Heredity (Edinb) ; 128(6): 434-449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418669

RESUMO

Leaf rust is one of the important diseases limiting global wheat production and productivity. To identify quantitative trait nucleotides (QTNs) or genomic regions associated with seedling and adult plant leaf rust resistance, multilocus genome-wide association studies (ML-GWAS) were performed on a panel of 400 diverse wheat genotypes using 35 K single-nucleotide polymorphism (SNP) genotyping assays and trait data of leaf rust resistance. Association analyses using six multi-locus GWAS models revealed a set of 201 significantly associated QTNs for seedling and 65 QTNs for adult plant resistance (APR), explaining 1.98-31.72% of the phenotypic variation for leaf rust. Among these QTNs, 51 reliable QTNs for seedling and 15 QTNs for APR were consistently detected in at least two GWAS models and were considered reliable QTNs. Three genomic regions were pleiotropic, each controlling two to three pathotype-specific seedling resistances to leaf rust. We also identified candidate genes, such as leucine-rich repeat receptor-like (LRR) protein kinases, P-loop containing nucleoside triphosphate hydrolase and serine-threonine/tyrosine-protein kinases (STPK), which have a role in pathogen recognition and disease resistance linked to the significantly associated genomic regions. The QTNs identified in this study can prove useful in wheat molecular breeding programs aimed at enhancing resistance to leaf rust and developing next-generation leaf rust-resistant varieties.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Pão , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Doenças das Plantas/genética , Proteínas Quinases , Plântula/genética , Triticum/genética
14.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326649

RESUMO

Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at -260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.

15.
Front Genet ; 13: 832153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222548

RESUMO

Since the inception of the theory and conceptual framework of genomic selection (GS), extensive research has been done on evaluating its efficiency for utilization in crop improvement. Though, the marker-assisted selection has proven its potential for improvement of qualitative traits controlled by one to few genes with large effects. Its role in improving quantitative traits controlled by several genes with small effects is limited. In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained from genome-wide markers to choose candidates for the next breeding cycle is a powerful approach to improve quantitative traits. In the last two decades, GS has been widely adopted in animal breeding programs globally because of its potential to improve selection accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In addition, given the promising initial evaluation outcomes of GS for the improvement of yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and rice, prospects of integrating it in breeding crops are also being explored. Improved statistical models that leverage the genomic information to increase the prediction accuracies are critical for the effectiveness of GS-enabled breeding programs. Study on genetic architecture under drought and heat stress helps in developing production markers that can significantly accelerate the development of stress-resilient crop varieties through GS. This review focuses on the transition from traditional selection methods to GS, underlying statistical methods and tools used for this purpose, current status of GS studies in crop plants, and perspectives for its successful implementation in the development of climate-resilient crops.

16.
Comput Biol Med ; 141: 105052, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34836625

RESUMO

BACKGROUND: Aloe vera extract and its bioactive compounds possess anti-proliferative properties against cancer cells. However, no detailed molecular mechanism of action studies has been reported. We have now employed a computational approach to scrutinize the molecular mechanism of lead bioactive compounds from Aloe vera that potentially inhibit DNA synthesis. METHODS: Initially, the anti-proliferative activity of Aloe vera extract was examined in human breast cancer cells (in vitro/in vivo). Later on, computational screening of bioactive compounds from Aloe vera targeting DNA was performed by molecular docking and molecular dynamics simulation. RESULTS: In-vitro and in-vivo studies confirm that Aloe vera extract effectively suppresses the growth of breast cancer cells without significant cytotoxicity towards non-cancerous normal immortal cells. Computational screening predicts that growth suppression may be due to the presence of DNA intercalating bioactive compounds (riboflavin, daidzin, aloin, etc.) contained in Aloe vera. MM/PBSA calculation showed that riboflavin has a higher binding affinity at the DNA binding sites compared to standard drug daunorubicin. CONCLUSIONS: These observations support the hypothesis that riboflavin may be exploited as an anti-proliferative DNA intercalating agent to prevent cancer and is worthy of testing for the management of cancer by performing more extensive pre-clinical and if validated clinical trials.


Assuntos
Aloe , Neoplasias , Aloe/química , DNA , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
17.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281242

RESUMO

Cultivars with efficient root systems play a major role in enhancing resource use efficiency, particularly water absorption, and thus in drought tolerance. In this study, a diverse wheat association panel of 136 wheat accessions including mini core subset was genotyped using Axiom 35k Breeders' Array to identify genomic regions associated with seedling stage root architecture and shoot traits using multi-locus genome-wide association studies (ML-GWAS). The association panel revealed a wide variation of 1.5- to 50-fold and were grouped into six clusters based on 15 traits. Six different ML-GWAS models revealed 456 significant quantitative trait nucleotides (QTNs) for various traits with phenotypic variance in the range of 0.12-38.60%. Of these, 87 QTNs were repeatedly detected by two or more models and were considered reliable genomic regions for the respective traits. Among these QTNs, eleven were associated with average diameter and nine each for second order lateral root number (SOLRN), root volume (RV) and root length density (RLD). A total of eleven genomic regions were pleiotropic and each controlled two or three traits. Some important candidate genes such as Formin homology 1, Ubiquitin-like domain superfamily and ATP-dependent 6-phosphofructokinase were identified from the associated genomic regions. The genomic regions/genes identified in this study could potentially be targeted for improving root traits and drought tolerance in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Osmorregulação/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Triticum/genética , Secas , Variação Genética , Poliploidia , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670594

RESUMO

Combining cancer-selective viral replication and simultaneous production of a therapeutic cytokine, with potent "bystander" anti-tumor activity, are hallmarks of the cancer terminator virus (CTV). To expand on these attributes, we designed a next generation CTV that additionally enables simultaneous non-invasive imaging of tumors targeted for eradication. A unique tripartite CTV "theranostic" adenovirus (TCTV) has now been created that employs three distinct promoters to target virus replication, cytokine production and imaging capabilities uniquely in cancer cells. Conditional replication of the TCTV is regulated by a cancer-selective (truncated PEG-3) promoter, the therapeutic component, MDA-7/IL-24, is under a ubiquitous (CMV) promoter, and finally the imaging capabilities are synchronized through another cancer selective (truncated tCCN1) promoter. Using in vitro studies and clinically relevant in vivo models of breast and prostate cancer, we demonstrate that incorporating a reporter gene for imaging does not compromise the exceptional therapeutic efficacy of our previously reported bipartite CTV. This TCTV permits targeted treatment of tumors while monitoring tumor regression, with potential to simultaneously detect metastasis due to the cancer-selective activity of reporter gene expression. This "theranostic" virus provides a new genetic tool for distinguishing and treating localized and metastatic cancers.

20.
Cancer Res ; 81(9): 2429-2441, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33727225

RESUMO

Antigen-specific immunotherapy can be limited by induced tumor immunoediting (e.g., antigen loss) or through failure to recognize antigen-negative tumor clones. Melanoma differentiation-associated gene-7/IL24 (MDA-7/IL24) has profound tumor-specific cytotoxic effects in a broad spectrum of cancers. Here we report the enhanced therapeutic impact of genetically engineering mouse tumor-reactive or antigen-specific T cells to produce human MDA-7/IL24. While mock-transduced T cells only killed antigen-expressing tumor cells, MDA-7/IL24-producing T cells destroyed both antigen-positive and negative cancer targets. MDA-7/IL24-expressing T cells were superior to their mock-engineered counterparts in suppressing mouse prostate cancer and melanoma growth as well as metastasis. This enhanced antitumor potency correlated with increased tumor infiltration and expansion of antigen-specific T cells as well as induction of a Th1-skewed immunostimulatory tumor environment. MDA-7/IL24-potentiated T-cell expansion was dependent on T-cell-intrinsic STAT3 signaling. Finally, MDA-7/IL24-modified T-cell therapy significantly inhibited progression of spontaneous prostate cancers in Hi-Myc transgenic mice. Taken together, arming T cells with tumoricidal and immune-potentiating MDA-7/IL24 confers new capabilities of eradicating antigen-negative cancer cell clones and improving T-cell expansion within tumors. This promising approach may be used to optimize cellular immunotherapy for treating heterogeneous solid cancers and provides a mechanism for inhibiting tumor escape. SIGNIFICANCE: This research describes a novel strategy to overcome the antigenic heterogeneity of solid cancers and prevent tumor escape by engineering T lymphocytes to produce a broad-spectrum tumoricidal agent.


Assuntos
Transferência Adotiva/métodos , Engenharia Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Interleucinas/metabolismo , Melanoma/terapia , Neoplasias da Próstata/terapia , Neoplasias Cutâneas/terapia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Interleucinas/genética , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Transfecção , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA