Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 142(2): 167-180, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36242641

RESUMO

The Tibetan plateau and high mountain ranges of Nepal are one of the challenging geographical regions inhabited by modern humans. While much of the ethnographic and population-based genetic studies were carried out to investigate the Tibetan and Sherpa highlanders, little is known about the demographic processes that enabled the colonization of the hilly areas of Nepal. Thus, the present study aimed to investigate the past demographic events that shaped the extant Nepalese genetic diversity using mitochondrial DNA (mtDNA) variations from ethnic Nepalese groups. We have analyzed mtDNA sequences of 999 Nepalese and compared data with 38,622 published mtDNA sequences from rest of the world. Our analysis revealed that the genomic landscapes of prehistoric Himalayan settlers of Nepal were similar to that of the low-altitude extant Nepalese (LAN), especially Newar and Magar population groups, but differ from contemporary high-altitude Sherpas. LAN might have derived their East Eurasian ancestry mainly from low-altitude Tibeto-Burmans, who likely have migrated from East Asia and assimilated across the Eastern Himalayas extended from the Eastern Nepal to the North-East of India, Bhutan, Tibet and Northern Myanmar. We also identified a clear genetic sub-structure across different ethnic groups of Nepal based on mtDNA haplogroups and ectodysplasin-A receptor (EDAR) gene polymorphism. Our comprehensive high-resolution mtDNA-based genetic study of Tibeto-Burman communities reconstructs the maternal origins of prehistoric Himalayan populations and sheds light on migration events that have brought most of the East Eurasian ancestry to the present-day Nepalese population.


Assuntos
DNA Mitocondrial , Genética Populacional , Humanos , DNA Mitocondrial/genética , Povo Asiático , Etnicidade/genética , Tibet , Haplótipos
2.
Acta Biomater ; 88: 211-223, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822553

RESUMO

We report herein an affinity-based hydrogel used in creating subcutaneous depots of antibodies in vivo. The biomaterials design centered on pG_EAK, a polypeptide we designed and expressed in E. coli. The sequence consists of a truncated protein G (pG) genetically fused with repeats of the amphiphilic sequence AEAEAKAK ("EAK"). Capture of IgG was demonstrated in vitro in gels prepared from admixing pG_EAK and EAK ("pG_EAK/EAK gel"). The binding affinities and kinetics of pG for IgG were recapitulated in the pG_EAK polypeptide. Injecting IgG antibodies formulated with pG_EAK/EAK gel into subcutaneous space resulted in retention of the antibodies at the site for at least six days, whereas only signal at background levels was detected in grafts injected with IgG formulated in saline or diffusion-driven gel. The local retention of IgG in pG_EAK/EAK gel was correlated with limited distribution of the antibody in liver, spleen and lymph nodes, in contrast to those injected with antibodies formulated in saline or non-Fc binding EAK gel. In addition, antibodies formulated with pG_EAK/EAK gel and injected in mouse footpads were found to retain at the site for 19 days. As a demonstration of potential bioengineering applications, thymic epithelial cells (TECs), the primary population of thymic stromal cells that are critical for the development of T-lymphocytes, were mixed with pG_EAK/EAK gel formulated with TEC-specific anti-EpCAM antibodies and injected subcutaneously into athymic nude mice. The injected TECs congregated into functional thymic units in vivo, supporting the development of both CD4+ and CD8+ T cells as well as Foxp3+ regulatory T cells in the mice. In conclusion, pG_EAK/EAK gel can be used to retain IgG locally in vivo, and can be tailored as scaffolds for controlling deposition of molecular and/or cellular therapeutics. STATEMENT OF SIGNIFICANCE: The unique concept of the work centers on the genetic fusion of an Fc-binding domain and a self-assembling domain into a single polypeptide. To our knowledge, such bi-functional peptide has not been reported in the literature. The impact of the work lies in the ability to display IgG antibodies and Fc-fusion proteins of any specificity. The data shown demonstrate the platform can be used to localize IgG in vivo, and can be tailored for controlling deposition of primary thymic epithelial cells (TECs). The results support a biomaterials-based strategy by which TECs can be delivered as functional units to support T-lymphocyte development in vivo. The platform described in the study may serve as an important tool for immune engineering.


Assuntos
Engenharia Genética , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
3.
Methods Mol Biol ; 1576: 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-27730537

RESUMO

One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze-thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular , Organoides/citologia , Células-Tronco/citologia , Timo/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Nus
4.
Curr Stem Cell Rep ; 2(2): 128-139, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27529056

RESUMO

The thymus is the primary site for the generation of a diverse repertoire of T-cells that are essential to the efficient function of adaptive immunity. Numerous factors varying from aging, chemotherapy, radiation exposure, virus infection and inflammation contribute to thymus involution, a phenomenon manifested as loss of thymus cellularity, increased stromal fibrosis and diminished naïve T-cell output. Rejuvenating thymus function is a challenging task since it has limited regenerative capability and we still do not know how to successfully propagate thymic epithelial cells (TECs), the predominant population of the thymic stromal cells making up the thymic microenvironment. Here, we will discuss recent advances in thymus regeneration and the prospects of applying bioengineered artificial thymus organoids in regenerative medicine and solid organ transplantation.

5.
J Vis Exp ; (112)2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27404995

RESUMO

Thymus involution, associated with aging or pathological insults, results in diminished output of mature T-cells. Restoring the function of a failing thymus is crucial to maintain effective T cell-mediated acquired immune response against invading pathogens. However, thymus regeneration and revitalization proved to be challenging, largely due to the difficulties of reproducing the unique 3D microenvironment of the thymic stroma that is critical for the survival and function of thymic epithelial cells (TECs). We developed a novel hydrogel system to promote the formation of TEC aggregates, based on the self-assembling property of the amphiphilic EAK16-II oligopeptides and its histidinylated analogue EAKIIH6. TECs were enriched from isolated thymic cells with density-gradient, sorted with fluorescence-activated cell sorting (FACS), and labeled with anti-epithelial cell adhesion molecule (EpCAM) antibodies that were anchored, together with anti-His IgGs, on the protein A/G adaptor complexes. Formation of cell aggregates was promoted by incubating TECs with EAKIIH6 and EAK16-II oligopeptides, and then by increasing the ionic concentration of the medium to initiate gelation. TEC aggregates embedded in EAK hydrogel can effectively promote the development of functional T cells in vivo when transplanted into the athymic nude mice.


Assuntos
Células Epiteliais , Animais , Hidrogel de Polietilenoglicol-Dimetacrilato , Camundongos , Camundongos Nus , Oligopeptídeos , Linfócitos T , Timo
6.
Clin Immunol ; 160(1): 82-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25805654

RESUMO

Herein, we highlight the technical feasibility of generating a functional mini thymus with a novel hydrogel system, based on a peptide-based self-assembly platform that can induce the formation of 3-D thymic epithelial cell (TEC) clusters. Amphiphilic peptide EAK16-II co-assembled with its histidinylated analogue EAKIIH6 into beta-sheet fibrils. When adaptor complexes (recombinant protein A/G molecules loaded with both anti-His and anti-EpCAM IgGs) were added to the mix, TECs were tethered to the hydrogel and formed 3-D mini clusters. TECs bound to the hydrogel composites retained their molecular properties; and when transplanted into athymic nude mice, they supported the development of functional T-cells. These mini thymic units of TECs can be useful in clinical applications to reconstitute T-cell adaptive immunity.


Assuntos
Bioengenharia/métodos , Hidrogéis/química , Oligopeptídeos/química , Peptídeos/química , Timo/citologia , Alicerces Teciduais , Animais , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Linfopoese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Linfócitos T/citologia
7.
Mol Cell Biochem ; 404(1-2): 87-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739357

RESUMO

This study aims to investigate the signaling mechanism involved in HS-induced modulation of adenosine-mediated vascular tone in the presence or absence of adenosine A2A receptor (A2AAR). We hypothesized that HS-induced enhanced vascular relaxation through A2AAR and epoxyeicosatrienoic acid (EETs) is dependent on peroxisome proliferator-activated receptor gamma (PPARγ) and ATP-sensitive potassium channels (KATP channels) in A2AAR(+/+) mice, while HS-induced vascular contraction to adenosine is dependent on soluble epoxide hydrolase (sEH) that degrades EETs in A2AAR(-/-) mice. Organ bath and Western blot techniques were conducted in HS (4 % NaCl) and normal salt (NS, 0.45 % NaCl)-fed A2AAR(+/+) and A2AAR(-/-) mouse aorta. We found that enhanced vasodilation to A2AAR agonist, CGS 21680, in HS-fed A2AAR(+/+) mice was blocked by PPARγ antagonist (T0070907) and KATP channel blocker (Glibenclamide). Also, sEH inhibitor (AUDA)-dependent vascular relaxation was mitigated by PPARγ antagonist. PPARγ agonist (Rosiglitazone)-induced relaxation in HS-A2AAR(+/+) mice was attenuated by KATP channel blocker. Conversely, HS-induced contraction in A2AAR(-/-) mice was attenuated by sEH inhibitor. Overall, findings from this study that implicates the contribution of EETs, PPARγ and KATP channels downstream of A2AAR to mediate enhanced vascular relaxation in response to HS diet while, role of sEH in mediating vascular contraction in HS-fed A2AAR(-/-) mice.


Assuntos
Aorta/fisiologia , Epóxido Hidrolases/metabolismo , Canais KATP/metabolismo , PPAR gama/metabolismo , Receptor A2A de Adenosina/genética , Animais , Aorta/efeitos dos fármacos , Ácidos Araquidônicos/metabolismo , Benzamidas/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Canais KATP/genética , Camundongos , PPAR gama/genética , Piridinas/administração & dosagem , Receptor A2A de Adenosina/metabolismo , Cloreto de Sódio/administração & dosagem , Vasodilatação/efeitos dos fármacos
8.
J Cardiovasc Pharmacol ; 63(5): 385-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24390173

RESUMO

High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A1AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A1AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A1AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A1AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A1AR levels.


Assuntos
Dieta/efeitos adversos , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Dieta Hipossódica , Feminino , Técnicas In Vitro , Contração Isométrica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Receptor A2A de Adenosina/genética
9.
Am J Physiol Regul Integr Comp Physiol ; 304(1): R23-32, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23152114

RESUMO

The interaction between adenosine and soluble epoxide hydrolase (sEH) in vascular response is not known. Therefore, we hypothesized that lack of sEH in mice enhances adenosine-induced relaxation through A(2A) adenosine receptors (AR) via CYP-epoxygenases and peroxisome proliferator-activated receptor γ (PPARγ). sEH(-/-) showed an increase in A(2A) AR, CYP2J, and PPARγ by 31%, 65%, and 36%, respectively, and a decrease in A(1)AR and PPARα (30% and 27%, respectively) vs. sEH(+/+). 5'-N-ethylcarboxamidoadenosine (NECA, an adenosine receptor agonist), CGS 21680 (A(2A) AR-agonist), and GW 7647 (PPARα-agonist)-induced responses were tested with nitro-l-arginine methyl ester (l-NAME) (NO-inhibitor; 10(-4) M), ZM-241385, SCH-58261 (A(2A) AR-antagonists; 10(-6) M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10(-5) M), 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA; 10 µM) or trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB, sEH-inhibitors; 10(-5) M), and T0070907 (PPARγ-antagonist; 10(-7) M). In sEH(-/-) mice, ACh response was not different from sEH(+/+) (P > 0.05), and l-NAME blocked ACh-responses in both sEH(-/-) and sEH(+/+) mice (P < 0.05). NECA (10(-6) M)-induced relaxation was higher in sEH(-/-) (+12.94 ± 3.2%) vs. sEH(+/+) mice (-5.35 ± 5.2%); however, it was blocked by ZM-241385 (-22.42 ± 1.9%) and SCH-58261(-30.04 ± 4.2%). CGS-21680 (10(-6) M)-induced relaxation was higher in sEH(-/-) (+37.4 ± 5.4%) vs. sEH(+/+) (+2.14 ± 2.8%). l-NAME (sEH(-/-), +30.28 ± 4.8%, P > 0.05) did not block CGS-21680-induced response, whereas 14,15-EEZE (-7.1 ± 3.7%, P < 0.05) did. Also, AUDA and t-AUCB did not change CGS-21680-induced response in sEH(-/-) (P > 0.05), but reversed in sEH(+/+) (from +2.14 ± 2.8% to +45.33 ± 4.1%, and +63.37 ± 7.2, respectively). PPARα-agonist did not relax as CGS 21680 (-2.48 ± 1.1 vs. +37.4 ± 5.4%) in sEH(-/-), and PPARγ-antagonist blocked (from +37.4 ± 5.4% to +9.40 ± 3.1) CGS 21680-induced relaxation in sEH(-/-). Our data suggest that adenosine-induced relaxation in sEH(-/-) may depend on the upregulation of A(2A) AR, CYP2J, and PPARγ, and the downregulation of A(1) AR and PPARα.


Assuntos
Epóxido Hidrolases/fisiologia , Oxigenases/fisiologia , PPAR gama/fisiologia , Receptor A2A de Adenosina/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Benzamidas/farmacologia , Benzoatos/farmacologia , Butiratos/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/genética , Feminino , Inativação Gênica , Ácidos Láuricos/farmacologia , Masculino , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Fenetilaminas/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Triazinas/farmacologia , Triazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA