Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456679

RESUMO

Today, the intratumoral composition is a relevant factor associated with the progression and aggression of cancer. Although it suggests a metabolic interdependence among the subpopulations inside the tumor, a detailed map of how this interdependence contributes to the malignant phenotype is still lacking. To address this issue, we developed a systems biology approach integrating single-cell RNASeq and genome-scale metabolic reconstruction to map the metabolic cross-feeding among the subpopulations previously identified in the spheroids of MCF7 breast cancer. By calibrating our model with expression profiles and the experimental growth rate, we concluded that the reverse Warburg effect emerges as a mechanism to optimize community growth. Furthermore, through an in silico analysis, we identified lactate, alpha-ketoglutarate, and some amino acids as key metabolites whose disponibility alters the growth rate of the spheroid. Altogether, this work provides a strategy for assessing how space and intratumoral heterogeneity influence the metabolic robustness of cancer, issues suggesting that computational strategies should move toward the design of optimized treatments.


Assuntos
Neoplasias da Mama , Simulação por Computador , Esferoides Celulares , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Esferoides Celulares/metabolismo , Células MCF-7 , Efeito Warburg em Oncologia , Biologia de Sistemas/métodos
2.
BMJ Open Diabetes Res Care ; 12(4)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122366

RESUMO

INTRODUCTION: Chronic hyperglycemia affects neutrophil functions, leading to reduced pathogen killing and increased morbidity. This impairment has been directly linked to increased glycemia, however, how this specifically affects neutrophils metabolism and their differentiation in the bone marrow is unclear and difficult to study. RESEARCH DESIGN AND METHODS: We used high-resolution respirometry to investigate the metabolism of resting and activated donor neutrophils, and flow cytometry to measure surface CD15 and CD11b expression. We then used HL-60 cells differentiated towards neutrophil-like cells in standard media and investigated the effect of doubling glucose concentration on differentiation metabolism. We measured the oxygen consumption rate (OCR), and the enzymatic activity of carnitine palmitoyl transferase 1 (CPT1) and citrate synthase during neutrophil-like differentiation. We compared the surface phenotype, functions, and OCR of neutrophil-like cells differentiated under both glucose concentrations. RESULTS: Donor neutrophils showed significant instability of CD11b and OCR after phorbol 12-myristate 13-acetate stimulation at 3 hours post-enrichment. During HL-60 neutrophil-like cell differentiation, there was a significant increase in surface CD15 and CD11b expression together with the loss of mitochondrial mass. Differentiated neutrophil-like cells also exhibited higher CD11b expression and were significantly more phagocytic. In higher glucose media, we measured a decrease in citrate synthase and CPT1 activities during neutrophil-like differentiation. CONCLUSIONS: HL-60 neutrophil-like differentiation recapitulated known molecular and metabolic features of human neutrophil differentiation. Increased glucose concentrations correlated with features described in hyperglycemic donor neutrophils including increased CD11b and phagocytosis. We used this model to describe metabolic features of neutrophil-like cell differentiation in hyperglycemia and show for the first time the downregulation of CPT1 and citrate synthase activity, independently of mitochondrial mass.


Assuntos
Diferenciação Celular , Hiperglicemia , Neutrófilos , Humanos , Neutrófilos/metabolismo , Células HL-60 , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Antígeno CD11b/metabolismo , Glucose/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Consumo de Oxigênio , Antígenos CD15/metabolismo , Citrato (si)-Sintase/metabolismo
3.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126001

RESUMO

Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.


Assuntos
Glucose , Nanopartículas Metálicas , Prata , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Prata/química , Nanopartículas Metálicas/química , Feminino , Camundongos , Glucose/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Doxorrubicina/farmacologia , Humanos
4.
Chem Biol Drug Des ; 104(1): e14596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054402

RESUMO

We have conducted an experimental and computational evaluation of new doxorubicin (4a-c) and ß-lapachone (5a-c) analogs. These novel anticancer analogs were previously synthesized, but had not been tested or characterized until now. We have evaluated their antiproliferative and DNA cleavage inhibition properties using breast (MCF-7 and MDA-MB-231) and prostate (PC3) cancer cell lines. Additionally, cell cycle analysis was performed using flow cytometry. Computational studies, including molecular docking, pharmacokinetic properties, and an analysis of DFT and QTAIM chemical descriptors, were performed to gain insights into the electronic structure and elucidate the molecular binding of the new ß-lapachone and doxorubicin analogs with a DNA sequence and Topoisomerase II (Topo II)α. Our results show that 4a analog displays the highest antiproliferative activity in cancer cell lines by inducing cell death. We observed that stacking interactions and hydrogen bonding are essential to stabilize the molecule-DNA-Topo IIα complex. Moreover, 4a and 5a analogs inhibited Topo's DNA cleavage activity. Pharmacodynamic results indicated that studied molecules have favorable adsorption and permeability properties. The calculated chemical descriptors indicate that electron accumulation in quinone rings is relevant to the reactivity and biological activity. Based on our results, 4a is a strong candidate for becoming an anticancer drug.


Assuntos
Antineoplásicos , Proliferação de Células , DNA Topoisomerases Tipo II , Doxorrubicina , Simulação de Acoplamento Molecular , Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Clivagem do DNA/efeitos dos fármacos
5.
Metabolites ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38392995

RESUMO

Solid tumors frequently present a heterogeneous tumor microenvironment. Because tumors have the potential to proliferate quickly, the consequence is a reduction in the nutrients, a reduction in the pH (<6.8), and a hypoxic environment. Although it is often assumed that tumor clones show a similar growth rate with little variations in nutrient consumption, the present study shows how growth-specific rate (µ), the specific rates of glucose, lactate, and glutamine consumption (qS), and the specific rates of lactate and glutamate production (qP) of 2D-cultured lung tumor cells are affected by changes in their environment. We determined in lung tumor cells (A427, A549, Calu-1, and SKMES-1) the above mentioned kinetic parameters during the exponential phase under different culture conditions, varying the predominant carbon source, pH, and oxygen tension. MCF-7 cells, a breast tumor cell line that can consume lactate, and non-transformed fibroblast cells (MRC-5) were included as controls. We also analyzed how cell-cycle progression and the amino acid transporter CD98 expression were affected. Our results show that: (1) In glucose presence, µ increased, but qS Glucose and qP Lactate decreased when tumor cells were cultured under acidosis as opposed to neutral conditions; (2) most lung cancer cell lines consumed lactate under normoxia or hypoxia; (3) although qS Glutamine diminished under hypoxia or acidosis, it slightly increased in lactate presence, a finding that was associated with CD98 upregulation; and (4) under acidosis, G0/G1 arrest was induced in A427 cancer cells, although this phenomenon was significantly increased when glucose was changed by lactate as the predominant carbon-source. Hence, our results provide an understanding of metabolic responses that tumor cells develop to survive under stressful conditions, providing clues for developing promising opportunities to improve traditional cancer therapies.

6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769377

RESUMO

Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Células HeLa , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/genética , Oncogenes , Proliferação de Células , Expressão Gênica , Canais de Potássio Éter-A-Go-Go/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-36231664

RESUMO

The G-protein-coupled receptor for estrogen (GPER1) is a transmembrane receptor involved in the progression and development of various neoplasms whose ligand is estradiol (E2). 17ß-aminoestrogens (17ß-AEs) compounds, analogs to E2, are possible candidates for use in hormone replacement therapy (HRT), but our knowledge of their pharmacological profile is limited. Thus, we explored the molecular recognition of GPER1 with different synthetic 17ß-AEs: prolame, butolame, and pentolame. We compared the structure and ligand recognition sites previously reported for a specific agonist (G1), antagonists (G15 and G36), and the natural ligand (E2). Then, the biological effects of 17ß-AEs were analyzed through cell viability and cell-cycle assays in two types of female cancer. In addition, the effect of 17ß-AEs on the phosphorylation of the oncoprotein c-fos was evaluated, because this molecule is modulated by GPER1. Molecular docking analysis showed that 17ß-AEs interacted with GPER1, suggesting that prolame joins GPER1 in a hydrophobic cavity, similarly to G1, G15, and E2. Prolame induced cell proliferation in breast (MCF-7) and cervical cancer (SIHA) cells; meanwhile, butolame and pentolame did not affect cell proliferation. Neither 17ß-AEs nor E2 changed the activation of c-fos in MCF-7 cells. Meanwhile, in SIHA cells, E2 and 17ß-AEs reduced c-fos phosphorylation. Thus, our data suggest that butolame and pentolame, but not prolame, could be used for HRT without presenting a potential risk of inducing breast- or cervical-cancer-cell proliferation. The novelty of this work lies in its study of compound analogs to E2 that may represent important therapeutic strategies for women in menopause, with non-significant effects on the cell viability of cancer cells. The research focused on the interactions of GPER1, a molecule recently associated with promoting and maintaining various neoplasms.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Amino Álcoois , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Estradiol/farmacologia , Estrenos , Estrogênios/farmacologia , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Proteínas Oncogênicas/farmacologia
8.
Front Genet ; 13: 960263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263432

RESUMO

The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.

9.
Front Vet Sci ; 9: 972185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061122

RESUMO

The canine transmissible venereal tumor (CTVT) is the most common malignity in dogs. Because there are reports that this tumor is resistant to vincristine sulfate, the chemotherapeutic options are scarce, and the development of new therapeutic approaches is necessary. In this study, we evaluated the cytotoxic activity of vincristine, doxorubicin, temozolomide, panobinostat, toceranib, gemcitabine, cisplatin, fluorouracil, cyclophosphamide, and methotrexate on a CTVT cell line, determining that all drugs decreased the viability in a dose-dependent manner. Furthermore, they inhibit cellular migration in a time- and drug-dependent manner, as evaluated by the wound healing assay. On the other hand, vincristine, panobinostat, gemcitabine, toceranib, cyclophosphamide, and methotrexate increased the percentage of cells in the subG1 phase, and doxorubicin, temozolomide, gemcitabine, toceranib, and methotrexate decreased the percentage of cells in the synthesis phase. To efficientize the use of vincristine, only toceranib increased the cytotoxic effect of vincristine in a synergistic manner. Our results confirm the use of vincristine as the gold standard for CTVT treatment as monotherapy and suggest the use of a combinatorial and sequential treatment with toceranib.

10.
Front Genet ; 13: 823238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186039

RESUMO

Circular RNAs (CircRNAs) are a class of small endogenous noncoding RNA that are formed by means of either the spliceosome or lariat-type splicing. CircRNAs have multiple regulatory functions and have been detected in different cell types, like normal, tumor and immune cells. CircRNAs have been suggested to regulate T cell functions in response to cancer. CircRNAs can enter into T cells and promote the expression of molecules that either trigger antitumoral responses or promote suppression and the consequent evasion to the immune response. Additionally, circRNAs may promote tumor progression and resistance to anticancer treatment in different types of neoplasias. In this minireview we discuss the impact of circRNAs and its function in the regulation of the T-cells in immune response caused by cancer therapies.

12.
J Steroid Biochem Mol Biol ; 214: 105979, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34438041

RESUMO

Chemotherapy is a standard therapeutic option for triple-negative breast cancer (TNBC); however, its effectiveness is often compromised by drug-related toxicity and resistance development. Herein, we aimed to evaluate whether an improved antineoplastic effect could be achieved in vitro and in vivo in TNBC by combining dovitinib, a multi-kinase inhibitor, with calcitriol, a natural anticancer hormone. In vitro, cell proliferation and cell-cycle distribution were studied by sulforhodamine B-assays and flow cytometry. In vivo, dovitinib/calcitriol effects on tumor growth, angiogenesis, and endothelium activation were evaluated in xenografted mice by caliper measures, Itgb3/VEGFR2-immunohistochemistry and 99mTc-Ethylenediamine-N,N-diacetic acid/hydrazinonicotinamyl-Glu[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2 (99mTc-RGD2)-tumor uptake. The drug combination elicited a synergistically improved antiproliferative effect in TNBC-derived cells, which allowed a 7-fold and a 3.3-fold dovitinib dose-reduction in MBCDF-Tum and HCC-1806 cells, respectively. Mechanistically, the co-treatment induced a cell cycle profile suggestive of cell death and DNA damage (accumulation of cells in SubG1, S, and G2/M phases), increased the number of multinucleated cells and inhibited tumor growth to a greater extent than each compound alone. Tumor uptake of 99mTc-RGD2 was reduced by dovitinib, suggesting angiogenesis inhibition, which was corroborated by decreased endothelial cell growth, tumor-vessel density and VEGFR2 expression. In summary, calcitriol synergized dovitinib anticancer effects in vitro and in vivo, allowing for a significant dose-reduction of dovitinib while maintaining its antiproliferative potency. Our results suggest the beneficial convergence of independent antitumor mechanisms of dovitinib and calcitriol to inhibit TNBC-tumor growth.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Calcitriol/farmacologia , Oligopeptídeos/química , Quinolonas/farmacologia , Tecnécio/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Benzimidazóis/administração & dosagem , Calcitriol/administração & dosagem , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Integrina beta3/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica , Quinolonas/administração & dosagem , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
J Immunol Res ; 2021: 6668573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506060

RESUMO

Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/imunologia , Transição Epitelial-Mesenquimal/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias de Mama Triplo Negativas/terapia , Antígeno B7-H1/metabolismo , Mama/imunologia , Mama/patologia , Mama/cirurgia , Quimioterapia Adjuvante/métodos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mastectomia , Terapia Neoadjuvante/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Intervalo Livre de Progressão , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
14.
Am J Cancer Res ; 11(12): 5951-5964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018235

RESUMO

Patients with estrogen receptor (ER) α-negative breast tumors have a poor prognosis and are not suitable for hormone therapy. Previously, we demonstrated that calcitriol, the active metabolite of vitamin D, induces ERα expression and re-establishes the response to antiestrogens in ER-negative breast cancer cells. However, the mechanisms involved in this process have not been elucidated. Therefore, the present study was undertaken to investigate the mechanisms implicated in the calcitriol-induced ERα expression in ER-negative breast cancer cells. Using EMSA and ChIP assays, we found that the calcitriol/vitamin D receptor (VDR)/retinoic X receptor (RXR) complex binds to putative vitamin D response elements (VDREs) in the ERα gene promoter region. In addition, we established by a fluorometric assay that calcitriol decreased DNA-methyltransferase and histone deacetylase activities. Flow cytometry and qPCR analyses showed that co-treatment of calcitriol with inhibitors of the histone deacetylase and DNA methyltransferase, and genistein significantly increased ERα expression, compared to that observed with the compounds alone. In conclusion, the calcitriol-dependent ERα induction in ER-negative breast cancer cells results from binding of the VDR-RXR complex to VDREs in the ERα gene promoter region, including the downregulation of enzymes with chromatin-remodeling activities. These results may bring forth novel mechanistic knowledge into the actions of calcitriol in ERα-negative breast cancer.

15.
Am J Cancer Res ; 10(10): 3358-3369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163275

RESUMO

It is known that an inflammatory condition in different types of cancer provides a sustained microenvironment that favors tumor growth, invasion, and metastasis. Non-steroidal anti-inflammatory drugs such as indomethacin have demonstrated chemo-preventive, anti-proliferative and cytotoxic effects in a variety of tumors. The aim of this study was to investigate the effects of an organotin indomethacin derivative (OID) on the proliferation of breast and prostate cancer cell lines and the possible mechanisms of action of this compound. Different cancer cell lines were treated in the presence of OID and cell proliferation was measured by quantification of the DNA content, changes in the cell cycle profile and the activation of caspase 3 were evaluated by flow cytometry, interleukin 6 (IL-6) gene expression was evaluated by qPCR and protein expression was analyzed by ELISA and Western blot assays. OID inhibited the cell proliferation of a panel of cancer cell lines in a concentration-dependent manner. Moreover, the addition of OID to lapatinib treatment, targeted therapy for breast cancer, significantly enhanced its antiproliferative response. The effects on cell proliferation of these compounds involved, among others, the induction of apoptosis, the downregulation of IL-6 and a decrease of the MAPK activation pathway. Our results suggest that the use of OID alone or in combination with tyrosine kinase inhibitors could be considered as adjuvants in the treatment of cancer.

16.
Front Oncol ; 10: 1152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850327

RESUMO

Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.

17.
Front Oncol ; 10: 807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596143

RESUMO

Lactic acidosis (3 to 40 mM, pH < 6.9) is a condition found in solid tumors because tumor cells have a high rate of glucose consumption and lactate production even in the presence of oxygen; nevertheless, the microenvironment might still provide a sufficient glucose supply. Lactic acidosis has been proposed to shift metabolism from aerobic glycolysis toward oxidative phosphorylation (OXPHOS). We tested if lung tumor cells cultured under lactic acidosis shift their metabolism from glycolysis to OXPHOS by consuming extracellular lactate, increasing growth rate. We analyzed lung adenocarcinoma (A-549, A-427) cell lines and non-transformed fibroblast cells (MRC-5), which were cultured using RPMI-1640 medium initially containing lactate (2 mM) and glucose (10 mM), at pH 7.2 or 6.2 and oxygen tension 21% O2 (normoxia) or 2% O2 (hypoxia). We obtained growth curves, as well as glucose consumption and lactate production rates (measured during exponential growth) for each cell line. HIF-1α (Hypoxia-inducible factor 1 α), CS (citrate synthase) and AMPK (AMP-activated protein kinase) transcript levels were analyzed using RT-qPCR. By flow cytometry, we determined: (a) expression of glucose transporters (GLUT)1 and 4; (b) lactate transporters (MCT)1 and 4; (c) cell cycle profile, and (d) protein levels of HIF-1α, total and phosphorylated AMPK (pAMPK). Mitochondrial functionality was evaluated by measuring O2 consumption in tumor cells using polarography and a Clark-type electrode. Tumor and non-transformed cells used both aerobic glycolysis and OXPHOS for obtaining energy. As of 48 h of culture, lactate levels ranged from (4.5-14 mM), thus forming a lactic environment. Lactic acidosis diminished GLUT1/GLUT4 expression and glucose consumption in A-549, but not in A-427 cells, and induced differential expression of HIF-1α, AMPK, and CS transcripts. A-427 cells increased pAMPK and HIF-1α levels and shifted their metabolism increasing OXPHOS; thus supporting cell growth. Conversely, A-549 cells increased HIF-1α protein levels, but did not activate AMPK and diminished OXPHOS. A-549 cells survived by arresting cells in G1-phase. Our findings show that lactic acidosis diminishes Warburg effect in tumor cells, but this change does not necessarily promote a shift to OXPHOS. Hence, lung adenocarcinomas show a differential metabolic response even when they are under the same microenvironmental conditions.

18.
Biomed Pharmacother ; 126: 110062, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32172064

RESUMO

In 1889, Steven Paget postulated the theory that cancer cells require a permissive environment to grow. This permissive environment is known as the tumor microenvironment (TME) and nowadays it is evident that the TME is involved in the progression and response to therapy of solid cancer tumors. Triple-negative breast cancer is one of the most lethal types of cancer for women worldwide and chemotherapy remains the standard treatment for these patients. IMMUNEPOTENT CRP is a bovine dialyzable leukocyte extract with immunomodulatory and antitumor properties. The combination of chemotherapy and IMMUNEPOTENT CRP improves clinical parameters of breast cancer patients. In the current study, we aimed to evaluate the antitumor effect of doxorubicin/cyclophosphamide chemotherapy plus IMMUNEPOTENT CRP and its impact over the tumor microenvironment in a triple-negative breast cancer murine model. We evaluated CD8+, CD4+, T regulatory cells, memory T cells, myeloid-derived suppressor cells, CD71+, innate effector cells and molecules such as α-SMA, VEGF, CTLA-4, PD-L1, Gal-3, IDO, IL-2, IFN-γ, IL-12, IL-6, MCP-1, and IL-10 as part of the components of the TME. Doxorubicin/cyclophosphamide + IMMUNEPOTENT CRP decreased tumor volume, prolonged survival, increased infiltrating and systemic CD8+ T cells and decreased tumor suppressor molecules (such as PD-L1, Gal-3, and IL-10 among others). In conclusion, we suggest that IMMUNEPOTENT CRP act as a modifier of the TME and the immune response, potentiating or prolonging anti-tumor effects of doxorubicin/cyclophosphamide in a triple-negative breast cancer murine model.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Extratos Celulares/uso terapêutico , Fatores Imunológicos/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Bovinos , Extratos Celulares/administração & dosagem , Extratos Celulares/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Feminino , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Leucócitos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/imunologia , Microambiente Tumoral/imunologia
19.
Front Oncol ; 9: 1053, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681589

RESUMO

Lactic acidosis, glucose deprivation and hypoxia are conditions frequently found in solid tumors because, among other reasons, tumors switch to Warburg effect and secrete high levels of lactate, which decreases the pH (<6. 9) in the microenvironment. We hypothesized that lung cancer cells consume lactate and induce mitochondrial biogenesis to support survival and proliferation in lactic acidosis with glucose deprivation even under hypoxia. We examined lung adenocarcinoma cell lines (A-427 and A-549), a breast cancer cell line (MCF-7) and non-transformed fibroblasts (MRC-5). Cells were cultured using RPMI-1640 medium with 28 mM lactate varying pH (6.2 or 7.2) under normoxia (atmospheric O2) or hypoxia (2% O2). Cellular growth was followed during 96 h, as well as lactate, glutamine and glutamate levels, which were measured using a biochemical analyzer. The expression levels of monocarboxylate transporters (MCT1 and MCT4) were evaluated by flow cytometry. To evaluate mitochondrial biogenesis, mitochondrial mass was analyzed by flow cytometry and epifluorescence microscopy. Also, mitochondrial DNA (mtDNA) was measured by qPCR. Transcript levels of Nuclear Respiratory Factors (NRF-1 and NRF-2) and Transcription Factor A Mitochondrial (TFAM) were determined using RT-qPCR. The specific growth rate of A-549 and A-427 cells increased in lactic acidosis compared with neutral lactosis, either under normoxia or hypoxia, a phenomenon that was not observed in MRC-5 fibroblasts. Under hypoxia, A-427 and MCF-7 cells did not survive in neutral lactosis but survived in lactic acidosis. Under lactic acidosis, A-427 and MCF-7 cells increased MCT1 levels, reduced MCT4 levels and consumed higher lactate amounts, while A-549 cells consumed glutamine and decreased MCT1 and MCT4 levels with respect to neutral lactosis condition. Lactic acidosis, either under normoxia or hypoxia, increased mitochondrial mass and mtDNA levels compared with neutral lactosis in all tumor cells but not in fibroblasts. A-549 and MCF-7 cells increased levels of NRF-1, NRF-2, and TFAM with respect to MRC-5 cells, whereas A-427 cells upregulated these transcripts under lactic acidosis compared with neutral lactosis. Thus, lung adenocarcinoma cells induce mitochondrial biogenesis to support survival and proliferation in lactic acidosis with glucose deprivation.

20.
Cancers (Basel) ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698751

RESUMO

Calcitriol is a multitarget anticancer hormone; however, its effects on angiogenesis remain contradictory. Herein, we tested whether the antiangiogenic phytochemicals curcumin or resveratrol improved calcitriol antitumorigenic effects in vivo. Triple-negative breast cancer tumoral cells (MBCDF-T) were xenografted in nude mice, maintaining treatments for 3 weeks. Tumor onset, volume and microvessel density were significantly reduced in mice coadministered with calcitriol and curcumin (Cal+Cur). Vessel count was also reduced in mice simultaneously treated with calcitriol and resveratrol (Cal+Rsv). Cal+Cur and Cal+Rsv treatments resulted in less tumor activated endothelium, as demonstrated by decreased tumor uptake of integrin-targeted biosensors in vivo. The renal gene expression of Cyp24a1 and Cyp27b1 suggested increased calcitriol bioactivity in the combined regimens. In vitro, the phytochemicals inhibited both MBCDF-T and endothelial cells proliferation, while potentiated calcitriol's ability to reduce MBCDF-T cell-growth and endothelial cells migration. Resveratrol induced endothelial cell death, as deduced by increased sub-G1 cells accumulation, explaining the reduced tumor vessel number in resveratrol-treated mice, which further diminished when combined with calcitriol. In conclusion, the concomitant administration of calcitriol with curcumin or resveratrol synergistically promoted anticancer effects in vitro and in vivo in human mammary tumor cells. Whereas the results suggest different mechanisms of action of the phytochemicals when coadministered with calcitriol, the converging biological effect was inhibition of tumor neoangiogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA