Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
HardwareX ; 18: e00535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690152

RESUMO

Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.

2.
HardwareX ; 17: e00501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38192608

RESUMO

The electrospinning method is increasingly in demand due to its capability to produce fibers in the nanometer to micrometer range, with applications in diverse fields including biomedical, filtration, energy storage, and sensing. Many of these applications demand control over fiber layout and diameter. However, a standard flat plate collector yields random fibers with limited control over diameter and density. Other viable solutions offering a higher level of control are either scarce or substantially expensive, impeding the accessibility of this vital technique. This study addresses the challenge by designing an affordable laboratory-scale electrospinning setup with interchangeable collectors, enabling the creation of targeted fibers from random, aligned, and coiled. The collectors include the standard flat plate and two additional designs, which are a rotating drum and a spinneret tip collector. The rotating drum collector has adjustable speed control to collect aligned fibers and exhibits stability even at high rotational speeds. The spinneret tip collector was designed to produce helically coiled fibers. The setup was validated by directed fiber formation using polycaprolactone (PCL), a biodegradable and FDA-approved polymer. Overall, the uniqueness of the design lies in its affordability, modifiability, and replicability using readily available materials, thus extending the reach of the electrospinning technique.

3.
Biomimetics (Basel) ; 8(6)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887631

RESUMO

Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene, have ushered in a new era of multifunctional materials for applications from electronics to biomedical sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene, for example, can be designed for specialized applications using a plethora of element combinations and surface termination layers, making them attractive for highly optimized multifunctional composites. Although multiple critical engineering applications demand that such composites balance specialized functions with mechanical demands, the current knowledge of the mechanical performance and optimized traits necessary for such composite design is severely limited. In response to this pressing need, this paper critically reviews structure-function connections for highly mineralized 2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental bioinspired design principles that provide pathways for multifunctional 2D-based engineered systems. This paper highlights key bioinspired design features, including controlling flake geometry, enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the current design. Challenges in processing, such as flake size control and incorporating interlocking mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future perspectives and opportunities, including bridging the gap between theory and practice with multiscale modeling and machine learning design approaches. Overall, this review underscores the potential of bioinspired design for engineered 2D composites while acknowledging the complexities involved and providing valuable insights for researchers and engineers in this rapidly evolving field.

4.
Mol Cell Biochem ; 477(6): 1653-1668, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230605

RESUMO

Striatin and SG2NA are scaffold proteins that form signaling complexes called STRIPAK. It has been associated with developmental abnormalities, cancer, and several other diseases. Our earlier studies have shown that SG2NA forms a complex with the cancer-associated protein DJ-1 and the signaling kinase Akt, promoting cancer cell survival. In the present study, we used bioinformatics analyses to confirm the existence of two isoforms of human SG2NA, i.e., 78 and 87 kDas. In addition, several smaller isoforms like 35 kDa were also seen in western blot analyses of human cell lysates. The expression of these isoforms varies between different cancer cell lines of human origin. Also, the protein levels do not corroborate with its transcript levels, suggesting a complex regulation of its expression. In breast tumor tissues, the expression of the 35 and 78 kDa isoforms was higher as compared to the adjacent normal tissues, while the 87 kDa isoform was found in the breast tumor tissues only. With the progression of stages of breast cancer, while the expression of 78 kDa isoform decreased, 87 kDa became undetectable. In co-immunoprecipitation assays, the profile of the SG2NA interactome in breast tumors vis-à-vis adjacent normal breast tissues showed hundreds of common proteins. Also, some proteins were interacted with SG2NA in breast tumor tissues only. We conclude that SG2NA is involved in diverse cellular pathways and has roles in cellular reprogramming during tumorigenesis of the breast.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a Calmodulina , Autoantígenos/metabolismo , Neoplasias da Mama/genética , Proteínas de Ligação a Calmodulina/metabolismo , Feminino , Humanos , Isoformas de Proteínas/metabolismo , Transdução de Sinais
5.
Eur J Pharmacol ; 908: 174350, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265295

RESUMO

In cardiac muscle cells adrenergic agonists stimulate the generation of reactive oxygen species, followed by redox signaling. We postulated that the antagonists would attenuate such reactive oxygen species generation by the agonists. H9c2 cardiac myoblasts, neonatal rat cardiac myocytes, and HEK293 cells expressing ß1/ß2 adrenoceptors were stimulated with several agonists and antagonists. All the agonists and antagonists independently generated reactive oxygen species; but its generation was minimum whenever an agonists was added together with an antagonist. We monitored the Ca++ signaling in the treated cells and obtained similar results. In all treatment sets, superoxide and H2O2 were generated in the mitochondria and the cytosol respectively. NOX2 inhibitor gp91ds-tat blocked reactive oxygen species generation by both the agonists and the antagonists. The level of p47phox subunit of NOX2 rapidly increased upon treatment, and it translocated to the plasma membrane, confirming NOX2 activation. Inhibitor studies showed that the activation of NOX2 involves ERK, PI3K, and tyrosine kinases. Recombinant promoter-reporter assays showed that reactive oxygen species generated by both the agonists and antagonists modulated downstream gene expression. Mice injected with the ß-adrenergic agonist isoproterenol and fed with the antagonist metoprolol showed a robust induction of p47phox in the heart. We conclude that both the agonism and antagonism of adrenoceptors initiate redox signaling but when added together, they mutually counteract each other's effects. Our study thus highlights the importance of reactive oxygen species in adrenoceptor agonism and antagonism with relevance to the therapeutic use of the ß blockers.


Assuntos
Espécies Reativas de Oxigênio , Agonistas Adrenérgicos , Animais , Células HEK293 , Humanos , Miócitos Cardíacos , Ratos
6.
Mol Cell Biochem ; 445(1-2): 79-88, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29256115

RESUMO

Oxidative stress is implicated in the pathogenesis of a plethora of cardiovascular diseases including interstitial fibrosis, contractile dysfunction, ischemia-reperfusion injury, and cardiac remodeling. However, antioxidant therapies targeting oxidative stress in the progression of those diseases have largely been unsuccessful. The current study evaluated the effects of a NADPH oxidase inhibitor, apocynin (Apo), on the production of reactive oxygen species and the development of pathological cardiac hypertrophy under sustained ß-adrenergic stimulation in male Wistar rats. As evident from the HW/BW ratio, HW/TL ratio, echocardiography, and histopathology, hypertrophic responses induced by isoproterenol (Iso; 5 mg/Kg body weight, subcutaneous) were blocked by Apo (10 mg/Kg body weight, intraperitoneal). Iso treatment increased the transcript levels of cybb and p22-phox, the two subunits of Nox. Iso treatment also caused a decrease in reduced glutathione level that was restored by Apo. Increase in mRNA levels of a number of markers of hypertrophy, viz., ANP, BNP, ß-MHC, and ACTA-1 by Iso was either partially or completely prevented by Apo. Activation of key signaling kinases such as PKA, Erk, and Akt by Iso was also prevented by Apo treatment. Our study thus provided hemodynamic, biochemical, and molecular evidences supporting the therapeutic value of Apo in ameliorating adrenergic stress-induced cardiac hypertrophy.


Assuntos
Acetofenonas/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Isoproterenol/toxicidade , Animais , Biomarcadores/metabolismo , Peso Corporal , Cardiomegalia/diagnóstico por imagem , Ecocardiografia , Ativação Enzimática , Glutationa/metabolismo , Coração , Masculino , NADPH Oxidase 2/genética , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Tamanho do Órgão , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3553-3556, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060665

RESUMO

Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.


Assuntos
Pressão Arterial , Artefatos , Pressão Sanguínea , Determinação da Pressão Arterial , Fotopletismografia , Pulso Arterial , Análise de Onda de Pulso
8.
J Biomech ; 58: 105-113, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28528872

RESUMO

Tonometry-based devices are valuable method for vascular function assessment and for measurement of blood pressure. However current design and calibration methods rely on simple models, neglecting key geometrical features, and anthropometric and property variability among patients. Understanding impact of these influences on tonometer measurement is thus essential for improving outcomes of current devices, and for proposing improved design. Towards this goal, we present a realistic computational model for tissue-device interaction using complete wrist section with hyperelastic material and frictional contact. Three different tonometry geometries were considered including a new design, and patient-specific influences incorporated via anthropometric and age-dependent tissue stiffness variations. The results indicated that the new design showed stable surface contact stress with minimum influence of the parameters analyzed. The computational predictions were validated with experimental data from a prototype based on the new design. Finally, we showed that the underlying mechanics of vascular unloading in tonometry to be fundamentally different from that of oscillatory method. Due to directional loading in tonometry, pulse amplitude maxima was observed to occur at a significantly lower compression level (around 31%) than previously reported, which can impact blood pressure calibration approaches based on maximum pulse pressure recordings.


Assuntos
Modelos Biológicos , Artéria Radial/fisiologia , Adulto , Idoso , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Calibragem , Simulação por Computador , Desenho de Equipamento , Humanos , Manometria/instrumentação , Pessoa de Meia-Idade , Modelagem Computacional Específica para o Paciente , Punho/fisiologia
9.
Biomech Model Mechanobiol ; 12(5): 869-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23143353

RESUMO

Endovascular aneurysm repair (Greenhalgh in N Engl J Med 362(20):1863-1871, 2010) techniques have revolutionized the treatment of thoracic and abdominal aortic aneurysm disease, greatly reducing the perioperative mortality and morbidity associated with open surgical repair techniques. However, EVAR is not free of important complications such as late device migration, endoleak formation and fracture of device components that may result in adverse events such as aneurysm enlargement, need for long-term imaging surveillance and secondary interventions or even death. These complications result from the device inability to withstand the hemodynamics of blood flow and to keep its originally intended post-operative position over time. Understanding the in vivo biomechanical working environment experienced by endografts is a critical factor in improving their long-term performance. To date, no study has investigated the mechanics of contact between device and aorta in a three-dimensional setting. In this work, we developed a comprehensive Computational Solid Mechanics and Computational Fluid Dynamics framework to investigate the mechanics of endograft positional stability. The main building blocks of this framework are: (1) Three-dimensional non-planar aortic and stent-graft geometrical models, (2) Realistic multi-material constitutive laws for aorta, stent, and graft, (3) Physiological values for blood flow and pressure, and (4) Frictional model to describe the contact between the endograft and the aorta. We introduce a new metric for numerical quantification of the positional stability of the endograft. Lastly, in the results section, we test the framework by investigating the impact of several factors that are clinically known to affect endograft stability.


Assuntos
Aorta/anatomia & histologia , Simulação por Computador , Modelos Anatômicos , Enxerto Vascular , Análise de Elementos Finitos , Fricção , Hidrodinâmica , Pressão , Desenho de Prótese , Stents , Estresse Mecânico , Resistência à Tração , Suporte de Carga
10.
J Endovasc Ther ; 18(4): 559-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21861748

RESUMO

PURPOSE: To evaluate the biomechanical and hemodynamic forces acting on the intermodular junctions of a multi-component thoracic endograft and elucidate their influence on the development of type III endoleak due to disconnection of stent-graft segments. METHODS: Three-dimensional computer models of the thoracic aorta and a 4-component thoracic endograft were constructed using postoperative (baseline) and follow-up computed tomography (CT) data from a 69-year-old patient who developed type III endoleak 4 years after stent-graft placement. Computational fluid dynamics (CFD) techniques were used to quantitate the displacement forces acting on the device. The contact stresses between the different modules of the graft were then quantified using computational solid mechanics (CSM) techniques. Lastly, the intermodular junction frictional stability was evaluated using a Coulomb model. RESULTS: The CFD analysis revealed that curvature and length are key determinants of the displacement forces experienced by each endograft and that the first 2 modules were exposed to displacement forces acting in opposite directions in both the lateral and longitudinal axes. The CSM analysis revealed that the highest concentration of stresses occurred at the junction between the first and second modules of the device. Furthermore, the frictional analysis demonstrated that most of the surface area (53%) of this junction had unstable contact. The predicted critical zone of intermodular stress concentration and frictional instability matched the location of the type III endoleak observed in the 4-year follow-up CT image. CONCLUSION: The region of larger intermodular stresses and highest frictional instability correlated with the zone where a type III endoleak developed 4 years after thoracic stent-graft placement. Computational techniques can be helpful in evaluating the risk of endograft migration and potential for modular disconnection and may be useful in improving device placement strategies and endograft design.


Assuntos
Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Simulação por Computador , Procedimentos Endovasculares/instrumentação , Hemodinâmica , Modelos Cardiovasculares , Stents , Idoso , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/fisiopatologia , Aortografia/métodos , Fenômenos Biomecânicos , Implante de Prótese Vascular/efeitos adversos , Endoleak/etiologia , Endoleak/fisiopatologia , Procedimentos Endovasculares/efeitos adversos , Feminino , Migração de Corpo Estranho/etiologia , Migração de Corpo Estranho/fisiopatologia , Fricção , Humanos , Desenho de Prótese , Estresse Mecânico , Fatores de Tempo , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA