Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(13): 2596-2607, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38450570

RESUMO

Considerable research attention has been devoted to the development of portable and rapid fluorescence sensors that can selectively detect volatile acids, due to the harmful effects of acid vapour on the environment and human health. Although various types of fluorophores have been reported for sensing volatile acid vapours, regulation of the sensory response using aggregation induced emissive (AIE) based gelators has rarely been reported. In this study, we present the design and synthesis of a novel organogelator that is capable of sensing volatile acids through AIE. An acridine-attached poly(aryl ether) dendron molecular system is synthesized through an aldimine coupling reaction, which self-assembles and forms a gel, exhibiting AIE behavior. The synthesized molecule and prepared gel were characterized using NMR, MASS, XRD, HRSEM and rheology techniques. The AIE property of APD was investigated using steady-state absorption and emission spectroscopic techniques. The sensory response of the APD gelator was tested with various analytes, and the results indicated that APD shows rapid response, particularly to acid vapours, where the detection limits (DL) of trifluoroacetic acid (TFA), hydrochloric acid (HCl) and nitric acid (HNO3) vapor were as low as 0.22, 0.9 and 0.30 ppm, respectively. An APD solid film in filter paper shows a visual color change from yellow to red in an aqueous acidic medium, and the effect is reversed in an alkaline medium. These findings suggest that an APD gelator could potentially be utilized to generate a portable acid vapor sensor kit due to its low detection limit and rapid response time, and it could be also be used as a substitute for existing acid indicators.

2.
Langmuir ; 39(13): 4739-4755, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940390

RESUMO

A pyrene-based highly emissive low-molecular-weight organogelator, [2-(4-fluorophenyl)-3-(pyren-1-yl)acrylonitrile] (F1), is presented, which divulges thixotropic and thermochromic fluorescence switching via reversible gel-to-sol transition and tremendous superhydrophobicity (mean contact angles: 149-160°), devoid of any gelling and/or hydrophobic units. The rationale for the design strategy reveals that the restricted intramolecular rotation (RIR) in J-type self-assembly promotes F1 for the prolific effects of aggregation- and gelation-induced enhanced emission (AIEE and GIEE). Meanwhile, hindrance in charge transfer via the nucleophilic reaction of cyanide (CN-) on the C═C unit in F1 facilitates the selective fluorescence "turn-on" response in both solution [9:1 (v/v) DMSO/water] and solid state [paper kits] with significantly lower detection limits (DLs) of 37.23 nM and 13.4 pg/cm2, respectively. Subsequently, F1 discloses CN- modulated colorimetric and fluorescence "turn-off" dual-channel response for aqueous 2,4,6-trinitrophenol (PA) and 2,4-dinitrophenol (DNP) in both solution (DL = 49.98 and 44.1 nM) and solid state (DL = 114.5 and 92.05 fg/cm2). Furthermore, the fluorescent nanoaggregates of F1 in water and its xerogel films permit a rapid dual-channel "on-site" detection of PA and DNP, where the DLs ranged from nanomolar (nM) to sub-femtogram (fg) levels. Mechanistic insights reveal that the ground-state electron transfer from the fluorescent [F1-CN] ensemble to the analytes is responsible for anion driven sensory response, whereas the unusual inner filter effect (IFE) driven photoinduced electron transfer (PET) was responsible for self-assembled F1 response toward desired analytes. Additionally, the nanoaggregates and xerogel films also detect PA and DNP in their vapor phase with reasonable percentage of recovery from the soil and river water samples. Therefore, the elegant multifunctionality from a single luminogenic framework allows F1 to provide a smart pathway for achieving environmentally benign real-world applications on multiple platforms.

3.
Phys Chem Chem Phys ; 25(6): 5226-5236, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723193

RESUMO

Understanding the dynamics of the back electron transfer (BET) rate of ion pairs from the electronically excited state of donor-acceptor systems is crucial for developing materials for organic electronics. The structure-property relationships in the organic molecular architectures play a key role in controlling the BET rate and have been utilized as a criterion to design systems with a reduced BET rate. Here, we examine the influence of isomerism on the BET rate in anthracene based systems, viz., (E)-2-(2-(anthracen-9-yl)vinyl)benzonitrile (ortho-CN) and (E)-3-(2-(anthracen-9-yl)vinyl)benzonitrile (meta-CN) with N,N-diethylaniline (DEA) in methylcyclohexane using time-resolved spectroscopy. The radical cation (DEA˙+) and the radical anion (ortho-CN˙- or meta-CN˙-) generated after photoexcitation show synchronous decay kinetics, and the rate constant of back electron transfer (kBET) for the DEA/ortho-CN pair was 6.6 × 104 s-1, which is ca. 2 orders of magnitude lower compared with the DEA/meta-CN pair. The role of isomerism in providing resonance stabilization for the organic radicals is expected to have implications for strategies that retard charge recombination in photovoltaics. The role of the molecular structural features that dictate the kinetics for charge recombination has been further identified using quantum calculations.

4.
Phys Chem Chem Phys ; 25(5): 4121-4131, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651827

RESUMO

To push the boundary of the efficiency of perovskite nanocrystal-based photovoltaics, understanding the charge transfer at the interface of these nanocrystals is necessary. In an effort to understand the electronic effects of the substituents in the charge acceptor moiety, three electronically different small molecules (namely, chloranilic acid (CA), p-benzoquinone (BQ), and duroquinone (DQ)) were chosen and their detailed charge transfer dynamics were studied at the CsPbBr3 perovskite nanocrystal-small organic molecule interface using steady state and time-resolved spectroscopic methods. The steady-state absorption and time-resolved emission studies reveal that all three molecules interact with the NCs in the excited state. Femtosecond transient absorption experiments indicate a faster ground-state bleach recovery in the presence of the three acceptors, compared with the pristine NCs. Utilizing band alignment analysis, the faster bleach recovery of the NCs in presence of the acceptors was confirmed to be because of electron transfer from the photo-excited NCs to the acceptor molecules. Moreover, the electron transfer rates fall in the Marcus normal region and can be explained based on the electronic effects of the substituents present on the acceptor molecules.

5.
ACS Phys Chem Au ; 2(1): 3-15, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36855576

RESUMO

Inclusion complexation is one of the best strategies for developing a controlled release of a toxic drug without unexpected side effects from the very beginning of the administration to the target site. In this study, three benzimidazolium based ionic liquids (ILs) having bromide anion and cation bearing long alkyl chains, hexyl- ([C6CFBim]Br), octyl- ([C8CFBim]Br), and decyl- ([C10CFBim]Br) were designed and synthesized as antibacterial drugs. Inclusion complexes (ICs) of studied ILs have been prepared by the combination of ß-cyclodextrin (ß-CD), considering these conjugations should enhance the benignity of ILs and make them potential candidates for the controlled drug release. Characterizations and structural analysis of studied ICs have been performed by 1H NMR, 2D-ROESY NMR, FT-IR, HRMS, TGA, DSC, surface tension, ionic conductivity, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Further, the morphology of the ICs has been analyzed by SEM and TEM. Furthermore, neat ILs and ICs have been treated against Escherichia coli and Bacillus subtilis to investigate their antibacterial activity, which confirms the prevention of bacterium growth and the shrinkage of the bacterial cell wall. The findings of this work provide the proof of concept that studied benzimidazolium based ILs-ß-CD host-guest complexes should act as a potential candidate in controlled drug delivery and other biomedical applications.

6.
Chem Commun (Camb) ; 57(94): 12695-12698, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34782906

RESUMO

A rationally designed amphiphilic poly(aryl ether)-based dendrimer self-assembles into nanomicelles and exhibits tunable morphology upon varying the hydrophilic chain length. The 30 nm-sized dendrimer nanomicelles successfully entrapped Doxorubicin, demonstrated the sustained release of Doxorubicin and can successfully penetrate cancer cells through caveolae-dependent endocytosis, compared to the free drug.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Éteres/química , Nanopartículas/química , Polímeros/química , Tensoativos/química , Animais , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose/efeitos dos fármacos , Éteres/síntese química , Humanos , Células MCF-7 , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Camundongos , Micelas , Estrutura Molecular , Células NIH 3T3 , Polímeros/síntese química , Tensoativos/síntese química
7.
RSC Adv ; 11(31): 18984-18993, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478658

RESUMO

The majority of anti-cancer drugs fail to reach clinical trials due to their low water solubility. A biocompatible drug delivery system that encapsulates and efficiently delivers hydrophobic drugs to the target site is the need of the hour. This study addresses the issue by focusing on a polymeric polyglycerol sebacate (PGS) nanoparticles loaded with 5-fluorouracil (5FU), a primary line chemotherapy drug for many types of cancers. The generated nanoparticle (PGS-NP) was biocompatible and had minimal cytotoxicity against the MDA-MB-231 and A549 cell lines, even at a high concentration of 100 µg mL-1. The cell viability post treatment with PGS nanoparticles encapsulated with 5FU (PGS-5FU) decreased to as low as around 40% whereas, in the case of treatment with 5FU, the viability percentage increased. The nanoparticles also showed controlled drug release when encapsulated with 5FU. This striking observation suggested that these nanoparticles can improve the efficacy of drug delivery to tumor sites. Apoptosis assay and caspase-3 activity quantification supported these data wherein PGS-5FU treatment showed almost three times caspase-3 activity as compared to control cells. Additionally, throughout all the experiments, MDA-MB-231 cells were more sensitive to PGS-5FU than A549 cells, indicating that these nanoparticles are ideal for breast cancer treatment. In summary, 5FU encapsulated PGS nanoparticles are a potential drug carrier to deliver 5FU efficiently to cancer cells.

8.
Langmuir ; 36(35): 10537-10547, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841041

RESUMO

The development of fluorescent probes for selective detection of cyanide has gained considerable attention over the past two decades due to benefits like high selectivity as well as sensitivity, fast response, visual output, accurate quantification, and a simplified sample preparation procedure. However, the propensity of supramolecular gels toward fluorescence sensing of cyanide in aqueous medium is not well explored until now. Herein, we report the design and synthesis of a novel copper based metallogel capable of sensing cyanide in water by fluorescence "turn on". Toward this, a terpyridine attached poly(aryl ether) dendrone derivative (G1) is synthesized which forms gel and exhibits Aggregation Induced Emission (AIE). The addition and diffusion of copper ions to the gel resulted in the formation of a nonluminescent copper metallogel (CuG). The copper metallogel could selectively sense cyanide in water by a fluorescence "turn-on" signal due to the regeneration of the AIE active gel. The mechanistic pathways of the sensing have been studied, and the detection limit for sensing was found to be as low as 1.09 µM. A thin film of CuG was prepared by casting the gel and used as a test strip for the visual detection of cyanide in water.

9.
Soft Matter ; 16(8): 2075-2085, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003762

RESUMO

Developing composite hydrogels with excellent self-healing ability and reasonable mechanical strength is extremely challenging. Herein, to overcome this difficulty, we identify the importance of balancing the ratio between the components of a composite hydrogel based on graphene oxide and poly(acrylic acid-acrylamide) [GOxAAM]. The gel exhibits enhanced mechanical strength, excellent self-healing ability, and extraordinary swelling capacity (a swelling ratio of 732) at room temperature and neutral pH. Further, the dye adsorption of the composite hydrogel has been investigated. The hydrogel could selectively adsorb organic cationic dyes (methylene blue vs. rhodamine B) from contaminated water with remarkable efficiency (90-95%). The kinetics investigation suggests that the dye adsorption on this composite hydrogel follows a pseudo-second-order model. The reusability of the hydrogel has been demonstrated by repeating the adsorption-desorption process over 10-14 cycles with almost identical results in the adsorption efficiency. Moreover, the hydrogel is utilized as a solvent-induced slow release source for graphene quantum dots (GQDs). The results taken together suggest that the (GOxAAM) composite gel can be a promising candidate for developing multifunctional gel materials.

10.
ACS Appl Mater Interfaces ; 11(51): 48249-48260, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31790187

RESUMO

In the present work, a novel donor (D)-acceptor (A) fluorophore based on indeno-pyrrole derivative (PYROMe) has been utilized as a dual sensor for volatile acids and aromatic amines, where sensory responses were regulated by the aggregation-induced emission (AIE) property. The twisted structural framework of PYROMe, confirmed by crystal study, avoids closed cofacial encounter upon aggregation and aided with augmented rigidity via different noncovalent interactions that ultimately ensued restricted intramolecular rotation (RIR). Consequently, PYROMe exhibited AIE in THF/H2O mixture along with bright solid-state emission. The accessibility of protonation at carbonyl site and feasible HOMO energy to accept electrons from aromatic amines during photoexcitation enabled PYROMe as a potential dual sensor. A thin film of PYROMe was utilized for the quantitative detection of volatile acids and aromatic amines, and the detection limit (DL) was found to be as low as 0.77 ppm and 6.04 ppb for trifluoroacetic acid (TFA) and aniline vapors, respectively. Beyond the established scopes of substituted indeno-pyrroles, the present study paves the way, for the first time, toward an AIE-driven dual-stimuli response in indeno-pyrrole based D-A fluorophores.

11.
Colloids Surf B Biointerfaces ; 179: 180-189, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959230

RESUMO

Fluorophores are used for sensing biologically relevant ions, toxic metals or pathogenic markers. However, the mode of entry of such fluorophores into the cell greatly depends on their size, shape, surface charge, functional groups, and hydrophobicity. In particular, the influence of hydrophobicity on the intracellular uptake of fluorophores is poorly investigated. Self-assembly is a recent strategy to tune the intracellular uptake of fluorophores, facilitating increased intracellular sensing and fluorescence. Herein, self-assembly of three novel poly(aryl ether) dendron derivatives that contain rhodamine units was used to investigate the effect of hydrophobicity on the intracellular uptake of self-assembled fluorophores. The results suggest that monomer hydrophobicity plays an important role in the uptake. The dendron-based fluorophores, which upon self-assembly, formed stable spherical aggregates ranging from 300 to 500 nm. The rhodamine-based dendrons could selectively sense Hg2+ ions in the presence of other competing metal cations. Intracellular imaging of the dendron-based fluorophores displayed bright red fluorescence in human embryonic kidney cells. The rate of intracellular uptake of the three dendron-based fluorophores was analyzed by flow cytometry. The results establish the importance of the hydrophilic-lipophilic balance of the self-assembled amphiphiles for tuning the intracellular uptake.


Assuntos
Antracenos/metabolismo , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/metabolismo , Metais/análise , Sobrevivência Celular , Endocitose , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Íons , Mercúrio/análise , Espectrometria de Fluorescência
12.
Soft Matter ; 15(16): 3407-3417, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30938746

RESUMO

Fine tuning the optical properties of lanthanide-based gels using low molecular weight gelators has several advantages over the polymeric gelator analogues. Herein, we have prepared a lanthanide-based gel using low molecular weight citric acid as the assembler ligand and the optical properties of the gel were fine-tuned, utilizing a mixed ligand approach, enabling white light emission and environmental sensing (pH and temperature). The coligand utilized in the study was 4'-(4-bromophenyl)-2,2':6',2''-terpyridine. The resultant mixed-ligand gel exhibited green and red emissions in the presence of Tb(iii) ions and Eu(iii) ions, respectively. White light emission was achieved, with CIE coordinates (0.33, 0.32), in the bimetallic Tb/Eu metallogel formed by the precise control over Tb/Eu ratio. The correlated color temperature (CCT) for white-light-emitting gel was calculated, and the value of 5473 K suggests that the system generates cool white light. While most of the reported low molecular weight gelators exhibit on-off responses to stimulus at a particular value, the present system is capable of gradually monitoring changes for stimuli such as pH and temperature over a wide range (pH from 4-11 and temperature from 20 to 70 °C). The unique design strategy of the gel and the characteristic physicochemical properties of the lanthanide ions resulted in the unprecedented ability of the system to monitor changes in environmental stimuli over a considerable range.

13.
Anal Chem ; 91(5): 3533-3538, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712342

RESUMO

Strategies for simultaneous detection and detoxification of Hg2+ using a single sensor from biological and environmental samples are limited and have not been realized in living organisms so far. We report a highly selective, small molecule "turn-on" fluorescent sensor, PYDMSA, based on the cationic dye Pyronin Y (PY) and chelating agent meso-2,3-dimercaptosuccinic acid (DMSA) for the simultaneous detection and detoxification of inorganic mercury (Hg2+). After Hg2+ detection, concomitant detoxification was carried out with sufficient efficacy in living samples, which makes the sensor unique. PYDMSA exhibits high selectivity for Hg2+ over other competing metal ions with an experimental detection limit of ∼300 pM in aqueous buffer solution. When PYDMSA reacts with Hg2+, the CS-C9 bond in the sensor gets cleaved. This results in the "turn-on" response of the fluorescence probe with a concomitant release of one equivalent of water-soluble Hg2+-DMSA complex which leads to a synchronous detoxifying effect. The sensor by itself is nontoxic to cells in culture and has been used to monitor the real-time uptake of Hg2+ in live cells and zebrafish larvae. Thus, PYDMSA is a unique sensor which can be used to detect and detoxify mercury at the same time in living samples.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Pironina/química , Succímero/química , Animais , Células Cultivadas , Embrião não Mamífero , Células HEK293 , Humanos , Estrutura Molecular , Espectrometria de Fluorescência , Peixe-Zebra
14.
ACS Appl Bio Mater ; 2(8): 3212-3224, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030765

RESUMO

The increased threat of bacterial resistance against conventional antibiotics has warranted the need for development of membrane targeting antibacterial agents. Several self-assembled cationic amphiphiles with different supramolecular structures have been reported in recent years for potent antibacterial activity with increased specificity. In this study, we describe the self-assembly and antibacterial activity of four lower generation poly(aryl ether)-based amphiphilic dendrimers (AD-1, AD-2, AD-3, and AD-4) containing terminal amine (PAMAM-based), ester, and hydrazide functional groups with varied hydrophobicity. Among the four dendrimers under study, the amine-terminated dendrimer (AD-1) displayed potent antibacterial activity. The ratio of surface cationic charge to hydrophobicity had a significant effect on the antibacterial activity, where AD-3 dendrimer with increased surface cationic charges exhibited a higher minimum inhibitory concentration (MIC) than AD-1. AD-2 (ester terminated) and AD-4 (hydrazide terminated) dendrimers did not show any bactericidal activity. The amphiphilic dendrimer-bacteria interactions, further validated by binding studies, also showed significant changes in bacterial morphology, effective membrane permeation, and depolarization by AD-1 in comparison with AD-3. Molecular dynamics simulations of AD-1 and AD-3 on bacterial membrane patches further corroborated the experimental findings. The structural conformation of AD-1 dendrimer facilitated increased membrane interaction compared to AD-3 dendrimer. AD-1 also displayed selectivity to bacterial membranes over fibroblast cells (4× MIC), corroborating the significance of an optimal hydrophobicity for potent antibacterial activity with no cytotoxicity. The self-assembled (poly(aryl ether)-PAMAM-based) dendrimer (AD-1) also exhibited potent antibacterial activity in comparison with conventional higher generation dendrimers, establishing the implication of self-assembly for bactericidal activity. Moreover, the detailed mechanistic study reveals that optimal tuning of the hydrophobicity of amphiphilic dendrimers plays a crucial role in membrane disruption of bacteria. We believe that this study will provide valuable insights into the design strategies of amphiphilic dendrimers as antibacterial agents for efficient membrane disruption.

15.
Chempluschem ; 84(4): 392-402, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31939217

RESUMO

Co-facial stacking can result in aggregation-caused quenching (ACQ) in conjugated organic luminogens. This study provides an attractive 'slip-stack' self-assembly approach which can eliminate the occurrence of ACQ. The obtained results from steady-state and time-resolved optical studies, along with X-ray diffraction and computational studies demonstrate aggregation-induced emission enhancement (AIEE) of a donor-π-acceptor based 1,3-diarylpropynone, namely 1-(naphthalenyl)-3-(pyren-1-yl)prop-2-yn-1-one (PYNAP). Unlike the monomer, which exhibits poor photoluminescence in solution (φf =2 % in ACN), the twisted manifold of PYNAP allows the orientation of the molecules in a slip-stack fashion during the course of aggregation, which not only avoids a direct co-facial arrangement, but also induces augmented rigidity, leading to restricted intramolecular rotation (RIR) and enhanced emission quantum yield (φf =5 % in ACN/H2 O). The aggregation behavior of PYNAP's congener, 1-phenyl-3-(pyren-1-yl)prop-2-yn-1-one (PYPH) reinforces the hypothesis that slip-stack assembly is a useful strategy for AIEE in polycyclic hydrocarbon luminogens.

16.
Chemistry ; 24(50): 13213-13222, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882381

RESUMO

Designing intramolecular charge-transfer (ICT)-based luminogenic ordered assemblies exhibiting significant electrical transport is a challenging task in the field of organic optoelectronics. In this context, a series of novel phenothiazine-based oligo(p-phenylenevinylene) (OPV1-6) derivatives were designed and their structure-property relationship was investigated. Upon examining their photophysical properties, all the OPVs were found to exhibit significant intramolecular charge-transfer characteristics in organic solvents. While inspecting the self-assembly behaviour, the OPV with a long alkyl chain on the central phenyl core (OPV4) underwent gelation in organic solvent mixtures through strong hydrophobic interactions of the long hexadecyl chains and π-interactions from their aromatic counterparts. Computational studies revealed a lamellar packing of molecules in the assembly. Interestingly, the degree of ICT and the gelation abilities of OPVs were significantly influenced by the electronic nature of the substituents appended to the peripheral phenothiazines. Further, the AC impedance results revealed an increase in storage and electronic transport for the fluorescent thin films prepared by an increase in the content of OPV4 in PMMA.

17.
Chemistry ; 24(23): 6217-6230, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29441616

RESUMO

Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude.

18.
Acta Crystallogr C Struct Chem ; 73(Pt 6): 492-497, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28579573

RESUMO

Phosphate esters provide a rigid and stable polymeric backbone in nucleic acids. Metal complexes with phosphate ester groups have been synthesized as structural and spectroscopic models of phosphate-containing enzymes. Dinucleating ligands are used extensively to synthesize model complexes since they provide the support required to stabilize such complexes. The crystal structures of two dinuclear CoII complexes, namely bis(µ-diphenyl phosphato-κ2O:O')bis({2-methoxy-N,N-bis[(pyridin-2-yl)methyl]aniline-κ4N,N',N'',O}cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C19H19N3O)2](ClO4)2, and bis(µ-diphenyl phosphato-κ2O:O')bis({N,N-bis[(pyridin-2-yl)methyl]quinolin-8-amine-κ4N,N',N'',O}cobalt(II)) bis(perchlorate), [Co(C12H10O4P)2(C21H18N4)2](ClO4)2, with tetradentate 2-methoxy-N,N-bis[(pyridin-2-yl)methyl]aniline (L1) and N,N-bis[(pyridin-2-yl)methyl]quinolin-8-amine (L2) ligands are reported. The complexes have similar structures, with distorted octahedral geometries around the metal centres. Both are centrosymmetric (Z' = 0.5), with the CoII centres doubly bridged by diphenyl phosphate ester groups. A number of aromatic-aromatic interactions are present and differ between the two complexes as the anisole group in L1 is replaced by a quinoline group in L2. A detailed study of these interactions is presented.

19.
Phys Chem Chem Phys ; 19(10): 7288-7296, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28239716

RESUMO

Bathochromic and hypsochromic shifts in the photo-luminescent spectra of doped and functionalized carbon nano-dots (CDs) arise due to the complex interaction between CDs and the solvent molecules around them. Nitrogen-functionalized carbon nano-dots (N-CDs) were synthesized from citric acid and urea using microwave assisted hydrothermal methods. Optical studies (absorption and photoluminescence) from the as-synthesized N-CDs were carried out in polar protic, aprotic and non-polar solvents. When excited at 355 nm, blue photoluminescence (PL) was observed from the N-CDs dispersed in polar aprotic solvents while green emission was observed in polar protic solvents. In addition to the general solvent effect, the analysis of the luminescence spectra in protic solvents suggests that hydrogen bonding plays a crucial role in regulating the photophysical characteristics of the system. Temperature dependent PL studies and time correlated single photon counting experiments in various solvent dispersions of N-CDs support the role of hydrogen bonding. This indicates that these results depend on the specific interactions observed from the N-CDs and can be thought of as the primary driving force which is then followed by solvent properties like dipole moments. Both the Lippert-Mataga model and Kamlet-Taft parameters were used to support the photophysical properties observed from N-CDs.

20.
ACS Appl Mater Interfaces ; 9(8): 7619-7628, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28166624

RESUMO

Herein, we report the preparation of an aerogel and a membrane from a magnetic composite material by tuning the self-assembly at the molecular level. The gel exhibits an excellent oil absorption property, and the membrane shows a remarkable autonomous self-healing property. The composite is formed from an organosilicon-modified poly(amidoamine) (PAMAM) dendrimer, which is linked with iron oxide nanoparticles and poly(vinyl alcohol). Upon the addition of a cross-linker (formaldehyde), the system undergoes a fast self-assembly and gelation process. The aerogel, obtained after drying of the hydrogel, was modified with 1- bromohexadecane at room temperature and utilized for the removal of oil from water with 22.9 g/g absorption capacity. Intriguingly, the same system forms a membrane with 97% autonomous self-healing ability, in the absence of the cross-linker. The membrane was used to remove the salt content from water with an efficiency of 85%. The control experiments suggest that the presence of the magnetic material (iron oxide) plays a key role in the formation of both the aerogel and membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA