Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 343: 126155, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673195

RESUMO

Rapidly exhausting fossil fuels combined with the ever-increasing demand for energy led to an ongoing search for alternative energy sources to meet the transportation, manufacturing, domestic and other energy demands of the grown population. Microalgae are at the forefront of alternative energy research due to their significant potential as a renewable feedstock for biofuels. However, microalgae platforms have not found a way into industrial-scale bioenergy production due to various technical and economic constraints. The present review provides a detailed overview of the challenges in microalgae production processes for bioenergy purposes with supporting techno-economic assessments related to microalgae cultivation, harvesting and downstream processes required for crude oil or biofuel production. In addition, biorefinery approaches that can valorize the by-products or co-products in microalgae production and enhance the techno-economics of the production process are discussed.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Estudos de Viabilidade
2.
World J Microbiol Biotechnol ; 37(11): 182, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34580746

RESUMO

Microalgae offer a promising source of biofuel and a wide array of high-value biomolecules. Large-scale cultivation of microalgae at low density poses a significant challenge in terms of water management. High-density microalgae cultivation, however, can be challenging due to biochemical changes associated with growth dynamics. Therefore, there is a need for a biomarker that can predict the optimum density for high biomass cultivation. A locally isolated microalga Cyanobacterium aponinum CCC734 was grown with optimized nitrogen and phosphorus in the ratio of 12:1 for sustained high biomass productivity. To understand density-associated bottlenecks secretome dynamics were monitored at biomass densities from 0.6 ± 0.1 to 7 ± 0.1 g/L (2 to 22 OD) in batch mode. Liquid chromatography coupled with mass spectrometry identified 880 exometabolites in the supernatant of C. aponinum CCC734. The PCA analysis showed similarity between exometabolite profiles at low (4 and 8 OD) and mid (12 and 16 OD), whereas distinctly separate at high biomass concentrations (20 and 22 OD). Ten exometabolites were selected based on their role in influencing growth and are specifically present at low, mid, and high biomass concentrations. Taking cues from secretome dynamics, 5.0 ± 0.5 g/L biomass concentration (16 OD) was optimal for C. aponinum CCC734 cultivation. Further validation was performed with a semi-turbidostat mode of cultivation for 29 days with a volumetric productivity of 1.0 ± 0.2 g/L/day. The secretomes-based footprinting tool is the first comprehensive growth study of exometabolite at the molecular level at variable biomass densities. This tool may be utilized in analyzing and directing microalgal cultivation strategies and reduction in overall operating costs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Secretoma/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cultura de Células , Microalgas/citologia , Nitrogênio , Fósforo , Água
3.
Mol Biotechnol ; 61(8): 541-561, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31140149

RESUMO

Targeted genome editing using RNA-guided endonucleases is an emerging tool in algal biotechnology. Recently, CRISPR-Cas systems have been widely used to manipulate the genome of some freshwater and marine microalgae. Among two different classes, and six distinct types of CRISPR systems, Cas9-driven type II system has been widely used in most of the studies for targeted knock-in, knock-out and knock-down of desired genes in algae. CRISPR technology has been demonstrated in microalgae including diatoms to manifest the function of the particular gene (s) and developing industrial traits, such as improving lipid content and biomass productivity. Instead of these, there are a lot of gears to be defined about improving efficiency and specificity of targeted genome engineering of microalgae using CRISPR-Cas system. Optimization of tools and methods of CRISPR technology can undoubtedly transform the research toward the industrial-scale production of commodity chemicals, food and biofuels using photosynthetic cell factories. This review has been focused on the efforts made so far to targeted genome engineering of microalgae, identified scopes about the hurdles related to construction and delivery of CRISPR-Cas components, algae transformation toolbox, and outlined the future prospect toward developing the CRISPR platform for high-throughput genome-editing of microalgae.


Assuntos
Biotecnologia , Sistemas CRISPR-Cas , Edição de Genes , Microalgas , Microalgas/genética , Microalgas/metabolismo , Fotobiorreatores
4.
Bioresour Technol ; 244(Pt 2): 1304-1316, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28803061

RESUMO

There is a growing recognition that carbon-neutral biofuels and microalgae are eco-friendly options because of their high CO2 sequestering capability and ability to grow in wastewater/sea water and non-arable land. Also the intrinsic properties of microalgal systems can be exploited for high value compounds such as carbohydrates, lipids, pigments and proteins. This article provides a comprehensive review of various microalgae cultivation practices utilizing organic and inorganic carbon sources. The merits and demerits of the various extraction and analytical procedures have also been discussed in detail.


Assuntos
Biotecnologia , Carbono , Microalgas , Biocombustíveis , Biomassa , Águas Residuárias
5.
F1000Res ; 4: 1215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834999

RESUMO

Oral tongue squamous cell carcinomas (OTSCC) are a homogeneous group of tumors characterized by aggressive behavior, early spread to lymph nodes and a higher rate of regional failure. Additionally, the incidence of OTSCC among younger population (<50yrs) is on the rise; many of whom lack the typical associated risk factors of alcohol and/or tobacco exposure. We present data on single nucleotide variations (SNVs), indels, regions with loss of heterozygosity (LOH), and copy number variations (CNVs) from fifty-paired oral tongue primary tumors and link the significant somatic variants with clinical parameters, epidemiological factors including human papilloma virus (HPV) infection and tumor recurrence. Apart from the frequent somatic variants harbored in TP53, CASP8, RASA1, NOTCH and CDKN2A genes, significant amplifications and/or deletions were detected in chromosomes 6-9, and 11 in the tumors. Variants in CASP8 and CDKN2A were mutually exclusive. CDKN2A, PIK3CA, RASA1 and DMD variants were exclusively linked to smoking, chewing, HPV infection and tumor stage. We also performed a whole-genome gene expression study that identified matrix metalloproteases to be highly expressed in tumors and linked pathways involving arachidonic acid and NF-k-B to habits and distant metastasis, respectively. Functional knockdown studies in cell lines demonstrated the role of CASP8 in a HPV-negative OTSCC cell line. Finally, we identified a 38-gene minimal signature that predicts tumor recurrence using an ensemble machine-learning method. Taken together, this study links molecular signatures to various clinical and epidemiological factors in a homogeneous tumor population with a relatively high HPV prevalence.

6.
Planta ; 221(3): 386-93, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15657715

RESUMO

Tomato is one of the most important crop plants; however, attacks by pathogens can cause serious losses in production. In this report, we explore the potential of using the Arabidopsis thionin (Thi2.1) gene to genetically engineer enhanced resistance to multiple diseases in tomato. Potential thionin toxicity in fruits was negated by the use of a fruit-inactive promoter to drive the Thi2.1 gene. In transgenic lines containing RB7/Thi2.1, constitutive Thi2.1 expression was detected in roots and incidentally in leaves, but not in fruits. Disease assays revealed that the transgenic lines that were tested conferred significant levels of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW). Further studies indicated that BW disease progression in transgenic lines was delayed by a systemic suppression of bacterial multiplication. By adopting a safe genetic engineering strategy, the present investigation is another step forward demonstrating thionin practicality in crop protection.


Assuntos
Proteínas de Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Solanum lycopersicum/genética , Peptídeos Catiônicos Antimicrobianos , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Ralstonia solanacearum/crescimento & desenvolvimento , Transgenes/genética
7.
Transgenic Res ; 12(3): 329-36, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12779121

RESUMO

Genetic engineering to date has not been used to introduce disease resistance genes into the orchid gene pool. The ferredoxin-like protein gene originally isolated from sweet pepper is thought to function as a natural defense against infection due to its antimicrobial properties. Hence it was reasoned that introduction of this gene might produce Oncidium plants resistant to Erwinia carotovora, the causal agent for the soft rot disease. An expression vector containing sweet pepper ferredoxin-like protein (pflp) cDNA, hph and gusA coding sequence was successfully transformed into protocorm-like bodies (PLBs) of Oncidium orchid, using Agrobacterium tumefaciens strain EHA105. A total of 17 independent transgenic orchid lines was obtained, out of which six transgenic lines (beta-glucuronidase (GUS) positive) were randomly selected and confirmed by Southern, northern and western blot analyses. A bioassay was conducted on the transgenic lines. Transgenic plants showed enhanced resistance to E. carotovora, even when the entire plant was challenged with the pathogen. Our results suggest that pflp may be an extremely useful gene for genetic engineering strategies in orchids to confer resistance against soft rot disease.


Assuntos
Capsicum/química , Ferredoxinas/fisiologia , Imunidade Inata/genética , Orchidaceae/genética , Doenças das Plantas , Plantas Geneticamente Modificadas , Ferredoxinas/imunologia , Orchidaceae/imunologia , Pectobacterium carotovorum , Doenças das Plantas/microbiologia
8.
Planta ; 217(1): 60-5, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12721849

RESUMO

A novel method for selection of transgenic plants utilizing the sweet pepper ( Capsicum annuum L.) ferredoxin-like protein ( pflp) gene as selection marker and Erwinia carotovora as the selection agent has been developed. An expression vector containing a pflp cDNA driven by a cauliflower mosaic virus 35S promoter was successfully transformed into protocorm-like bodies of Oncidium orchid by Agrobacterium tumefaciens and particle bombardment, respectively. Erwinia carotovora was used as a selection agent to screen transformants, thereby obtaining transgenic plants without the use of an antibiotic selection agent. A total of 32 independent transgenic orchid lines were obtained, out of which 9 transgenic lines (beta-glucuronidase positive) were randomly selected and confirmed by Southern and northern blot analyses. The transgenic orchid plants showed enhanced resistance to E. carotovora, even when the entire plant was challenged with the pathogen. Our results suggest the novel use of the pflp gene as a resistance selection marker in plant genetic engineering strategies. In the future, the use of the pflp gene as a selection marker may facilitate the use of smaller gene constructs due to removal of bulky antibiotic selection and reporter genes. These constructs can then be used to incorporate additional genes of choice.


Assuntos
Cinamatos , Ferredoxinas/genética , Higromicina B/análogos & derivados , Orchidaceae/genética , Proteínas de Plantas/genética , Transformação Genética/genética , Agrobacterium tumefaciens/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marcadores Genéticos/genética , Higromicina B/farmacologia , Imunidade Inata/genética , Mutação , Orchidaceae/metabolismo , Pectobacterium carotovorum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA