Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Biol Macromol ; 264(Pt 1): 130445, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423441

RESUMO

Biopolymer-derived polyelectrolyte complexes (PECs) are a class of materials that have emerged as promising candidates for developing advanced electrochemical sensors due to their tunable properties, biocompatibility, cost-effective production, and high surface area. PECs are formed by combining positively and negatively charged polymers, resulting in a network with intriguing properties that can be tailored for specific sensing applications. The resultant PECs-based nanocomposites were used to modify the glassy carbon electrode (GCE) to detect the sulfamethazine (SFZ) antibiotic drug. In addition, electrochemical studies using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are used to evaluate the SFZ detection ability. Similarly, various microscopic and spectroscopic studies investigated the nano composite's structural features and morphological behavior. The κ-CGN/P(Am-co-DMDAAc)-GO modified GCE demonstrated excellent detection ability of SFZ with the nano molar range and without interference with similar structural components. Furthermore, the newly fabricated electrode κ-CGN/P(Am-co-DMDAAc)-GO was derived from naturally available materials, water-soluble, low cost, biocompatible, exhibits good conductivity, and excellent catalytic properties. Finally, κ-CGN/P(Am-co-DMDAAc)-GO- modified GCE has versatile, practical applications for detecting SFZ in real-time samples and determining the efficacy of an antibacterial activity.


Assuntos
Técnicas Eletroquímicas , Sulfametazina , Polieletrólitos , Carragenina , Técnicas Eletroquímicas/métodos , Antibacterianos/farmacologia , Carbono/química
2.
Environ Res ; 248: 118262, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280523

RESUMO

The accelerated development of special-wetting polymeric materials with hierarchical pores for membrane applications is crucial to effectively separating water-soluble and insoluble pollutants, such as oily wastewater, emulsion, organic pollutants, and heavy metals. This pressing environmental and socioeconomic issue requires the implementation of effective remediation technologies. In this study, we successfully fabricated an environmentally friendly membrane with a flexible property by combining biopolymers and magnetic nanohybrids of iron oxide (Fe3O4)-doped tungsten oxide (WO3) through a thermal-induced phase separation process (TIPS). The resulting membrane exhibited a well-defined 3D-interconnected porous network structure when blending poly (ε-caprolactone)/poly (D,L-lactide) (PCL)/(PDLLA) in an 8:2 volume ratio. The Fe3O4@WO3 nanohybrids were synthesized using a hydrothermal process, resulting in a star-shaped morphology from the sea urchin-like WO3 clusters, which showed great potential to efficiently separate water/oil contamination and facilitate visible-light-driven photocatalytic degradation of organic dyes (MB, Rh B, BY, and CR) and photoreduction of hexavalent chromium (Cr (VI)). The obtained PCL/PDLLA/Fe3O4@WO3 nanocomposite membrane demonstrated hydrophobic properties, showing a water contact angle of 95 ± 2° and an excellent oil adsorption capacity of ∼4-4.5 g/g without fouling. The interconnected porous structure of the composite membrane enabled the efficient separation of emulsions (≥99.4 %) and achieved a high permeation flux of up to 1524 L m-2 h-1 under gravity separation. Overall, we obtained a novel high-performance composite material with specialized wetting properties, offering significant potential for effectively removing insoluble and soluble organic contaminants from wastewater.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Águas Residuárias , Porosidade , Água , Polímeros
4.
Materials (Basel) ; 16(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37374498

RESUMO

Reduced graphene oxide (rGO) has been used in copper (II) oxide (CuO)-based photocatalysts as an additive material. An application of this CuO-based photocatalyst is in the CO2 reduction process. The preparation of rGO by a Zn-modified Hummers' method has resulted in a high quality of rGO in terms of excellent crystallinity and morphology. However, implementing Zn-modified rGO in CuO-based photocatalysts for the CO2 reduction process has yet to be studied. Therefore, this study explores the potential of combining Zn-modified rGO with CuO photocatalysts and performing these rGO/CuO composite photocatalysts to convert CO2 into valuable chemical products. The rGO was synthesized by using a Zn-modified Hummers' method and covalently grafted with CuO by amine functionalization with three different compositions (1:10, 1:20, and 1:30) of rGO/CuO photocatalyst. XRD, FTIR, and SEM were used to investigate the crystallinity, chemical bonds, and morphology of the prepared rGO and rGO/CuO composites. The performance of rGO/CuO photocatalysts for the CO2 reduction process was quantitively measured by GC-MS. We found that the rGO showed successful reduction using a Zn reducing agent. The rGO sheet could be grafted with CuO particles and resulted in a good morphology of rGO/CuO, as shown from the XRD, FTIR, and SEM results. The rGO/CuO material showed photocatalytic performance due to the advantages of synergistic components and resulted in methanol, ethanolamine, and aldehyde as fuel with amounts of 37.12, 8730, and 17.1 mmol/g catalyst, respectively. Meanwhile, adding CO2 flow time increases the resulting quantity of the product. In conclusion, the rGO/CuO composite could have potential for large-scale CO2 conversion and storage applications.

5.
Environ Res ; 221: 115285, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640938

RESUMO

In recent years, the usage of nitroaniline has played a vital role in pharmaceutical formulations as it is a crucial ingredient in the synthesis of pesticides and dyes. However, the level of nitroaniline existing in industrial waste keeps rising the environmental contamination. Thus, monitoring of active nitro-residuals becomes more significant in reducing the toxicity of the ecosystem. Therefore, we have taken an attempt to evaluate the hazardous pollutant 2-nitroaniline (2-NA) using the electrocatalyst viz., tin-doped bismuth oxide inserted on a biopolymer silk fibroin composite modified glassy carbon electrode (Sn-Bi2O3/SF@GCE). The Sn-Bi2O3/SF nanocomposite was synthesized through hydrothermal and co-precipitation methods. The physicochemical properties of the prepared Sn-Bi2O3/SF hybrid composite were examined by conventional microscopy and spectroscopic techniques like FE-SEM, HR-TEM, XRD, FTIR, Raman, and XPS. Furthermore, the bio-mineralized Sn-Bi2O3/SF@GCE displayed a wide linear range (0.009 µM-785.7 µM) and a lower detection limit (3.5 nM) with good sensitivity for 2-NA detection under the optimum conditions. The result shows that the Sn-Bi2O3/SF-modified GCE has good reproducibility, repeatability, and excellent selectivity for 2-NA detection in the presence of other co-interfering compounds. Moreover, the practical applicability of Sn-Bi2O3/SF@GCE sensors was investigated for the effective detection of 2-NA in real river water samples, revealing good recovery results.


Assuntos
Fibroínas , Nanopartículas , Fibroínas/química , Estanho , Rios , Reprodutibilidade dos Testes , Ecossistema , Carbono/química , Água , Limite de Detecção
6.
Polymers (Basel) ; 14(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35890684

RESUMO

We presented a simple and efficient method for making a polymer-metal nanocomposite using various amounts of cobalt ferrite magnetic nanoparticles (CoFe2O4 MNp) with sulfonated waste polystyrene (SWPS) and utilized for Calcon dye degradation. The MNp was encapsulated with SWPS to avoid agglomeration and maintain its smaller size. ATR-FTIR, Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), high-resolution transmittance electron microscopy (HR-TEM), atomic force microscopy (AFM) and solid UV were used to analyze the produced polymeric magnetic nanoparticles (SWPS/MNp). As the MNp loading increases, the average particle size decreases. For Calcon dye degradation, SWPS/MNp (20 wt%) was utilized with a smaller average particle size, and the structural changes were detected using a UV-Vis spectrophotometer. As a result, the Calcon dye's characteristic absorbance peak at 515 nm was red-shifted to 536 and 565 nm after 5 min, resulting in a color shift from dark brown to light blue that could be seen with the naked eye. A strong linear correlation was found between the red-shifted absorbance and the concentration of dye solution over the range of 10-100 ppm under optimal conditions. The proposed dye degradation process is simple, efficient, and environmentally friendly and has been successfully used to purify organic azo-dye-containing water.

7.
Heliyon ; 8(7): e09855, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35800245

RESUMO

Annually, world generates 2.01 billion tonnes of solid wastes and it is expected to generate 2.2 billion tonnes of solid waste by 2025. Globally double the amount of waste generation was anticipated by 2050, hence an urgent action is required for this intricate problem in adopting better management techniques and recycling strategies. Unfortunately, poor management of wastes causes vulnerable effects to the society in terms of health. Waste management is the key infrastructure to be developed in society, but so far it is not recognized as much in many developing countries. Significant innovations and improvements are made in the last few decades globally, but still 2 to 3 billion people around the world lack access to waste collection services. The aim of this present study is to give an overview of different types of waste techniques that are effectively followed by different countries and the action plans need to follow. This review focuses on the global current scenario of waste generation, and its management methods with relevant literatures providing the upgrades in the phases of waste management services like collection and transport, various techniques adopted for waste management, policies and legislation, countries investment in waste management process and the impact of solid waste management during Covid-19. Collectively we conclude that Asian countries need to allot more fund for handling solid waste. Also with the available waste management technique, it is not possible to achieve zero waste. Therefore, more new techniques are needed to be adapted.

8.
Nanomedicine (Lond) ; 16(11): 909-923, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33928793

RESUMO

Aim: To prepare efficient metal-semiconductor nanoparticles as noninvasive, real-time imaging probes for photothermal therapy (PTT) applications. Materials & methods: A bottom-up approach was used to fabricate core-shell Ag@CuS nanoparticles (NPs). PTT and Raman mapping were done using HeLa cells. Theoretical simulation of electric field enhancement and heat dissipation density of Ag@CuS NPs was performed. Results: PTT-induced hyperthermia was achieved under 940 nm near-infrared light irradiation. Surface-enhanced Raman spectroscopy (SERS) signals of dye molecules were observed when conjugated with Ag@CuS NPs. Conclusion: Ag@CuS NPs are found to be efficient for SERS imaging and localized heating under laser irradiation, making a promising candidate for SERS-guided PTT.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre , Células HeLa , Humanos , Terapia Fototérmica , Prata , Análise Espectral Raman
9.
Mikrochim Acta ; 188(3): 103, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646401

RESUMO

Molybdenum disulfide (MoS2) surface functionalization was performed with a catechol-containing polymer sodium alginate (SA) and dopamine (DA) through simultaneous MoS2 exfoliation and self-polymerization of DA. The MoS2/SA-PDA nanocomposite was characterized using spectroscopic, microscopic, and electroanalytical techniques to evaluate its electrocatalytic performance. The electrocatalytic behavior of the MoS2/SA-PDA nanocomposite modified electrode for the detection of acebutolol (ACE), a cardio-selective ß-blocker drug was explored  through cyclic voltammetric and differential pulse voltammetric techniques. The influence of scan rate, concentration, and pH value on the oxidation peak current of ACE was investigated  to optimize the deducting condition. The electrochemical activity of the MoS2/SA-PDA nanocomposite electrode was attributed to the existence of reactive functional groups being contributed from SA, PDA, and MoS2 exhibiting a synergic effect. The MoS2/SA-PDA nanocomposite modified electrode exhibits admirable electrocatalytic activity with a wide linear response range (0.009 to 520 µM), low detection limit (5 nM), and high sensitivity (0.354 µA µM-1 cm-2) also in the presence of similar (potentially interfering) compounds. The fabricated MoS2/SA-PDA nanocomposite modified electrode can be useful for the detection of ACE in pharmaceutical analysis.


Assuntos
Acebutolol/análise , Antagonistas de Receptores Adrenérgicos beta 1/análise , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Nanocompostos/química , Acebutolol/sangue , Acebutolol/química , Acebutolol/urina , Antagonistas de Receptores Adrenérgicos beta 1/sangue , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/urina , Alginatos/química , Técnicas Biossensoriais/métodos , Dissulfetos/química , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Indóis/química , Limite de Detecção , Molibdênio/química , Oxirredução , Polímeros/química , Reprodutibilidade dos Testes
10.
Mikrochim Acta ; 188(2): 35, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420619

RESUMO

Two-dimensional (2D) MoS2core-shell nanoparticles were synthesized using an eco-friendly surface functionalization-agent with L-glutathione and cystamine (L-GSH-MoS2-CYS) using ultrasonic frequency of 20-25 kHz. The novel modified electrode was evaluated for the electrochemical detection of doxorubicin (DOX), through cyclic and differential pulse voltammetric techniques. The electro-catalytic oxidation currents of DOX exhibited a linear relationship in the concentration ranges 0.1-78.3 and 98.3-1218 µM, with a detection limit of 31 nM. A sensitivity of 0.017µA µM-1 cm-2 was acquired at 0.48 V. The fabricated L-GSH-MoS2-CYS modified electrode showed excellent precision, selectivity, repeatability, and reproducibility during the determination of DOX levels in blood serum samples. Thus, the fabricated L-GSH-MoS2-CYS/GCE modified electrode has potential for clinical applications for optimization of chemotherapeutic drugs owing to its selectivity, ease of preparation, and long-term stability. Graphical abstract.


Assuntos
Cistamina/química , Dissulfetos/química , Doxorrubicina/sangue , Glutationa/química , Nanopartículas Metálicas/química , Molibdênio/química , Carbono/química , Doxorrubicina/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes
11.
Mater Sci Eng C Mater Biol Appl ; 110: 110676, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204104

RESUMO

Obesity and type 2 diabetes have become serious health problems in 21st century. Development of non-invasive treatment to treat obesity and type-2 diabetes is still unmet needs. For targeting on this, one of the promising treatments is to implant an intestine sleeve in the gastrointestinal tract for limitation of food absorption. In this context, biodegradable polymer intestine sleeve was composed of polycaprolactone (PCL), poly-DL-lactic acid (PDLLA) and disk-shape nano-clay (Laponite®), and fabricated as an implantable device. Here, Laponite® as a rheological additive to improve the compatibility of PCL and PDLLA, and the polymers/clay composites were also evaluated by scanning electron microscopy SEM analysis and mechanical measurements. The mass ratio 90/10/1 of PCL/PDLLA/Laponite® composite was selected for fabrication of intestine sleeve, because of the highest toughness and flexibility, which are tensile strength of 91.9 N/mm2 and tensile strain of 448% at the failure point. The prepared intestine sleeve was implanted and deployed at the duodenum in type2 diabetic rats, providing significant benefits in control of the body weight and blood glucose, while compared with the non-implanted type 2 diabetic rats. More importantly, the food intake records and histopathological section reports presented that the implanted rats still have normal appetites and no noticeable acute symptoms of inflammation in the end of the test. These appreciable performances suggested the implantation of biocompatible polymer composites has a highly potential treatment for obesity and type 2 diabetes.


Assuntos
Argila/química , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Intestinos/cirurgia , Nanocompostos/química , Obesidade/terapia , Polímeros/química , Próteses e Implantes , Animais , Diabetes Mellitus Tipo 2/patologia , Intestinos/diagnóstico por imagem , Nanocompostos/ultraestrutura , Obesidade/patologia , Poliésteres/química , Implantação de Prótese , Ratos Sprague-Dawley , Resistência à Tração
12.
Int J Biol Macromol ; 107(Pt B): 2122-2130, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29051103

RESUMO

Appreciated raw materials like silk-sericin can be recovered from silk-textile industrial waste for the production of novel functional nanomaterials. In this study, highly fluorescent sericin based carbon nanosheets (SCN) were produced from industrial wastewater containing silk-sericin as a precursor, and was applied as bio-imaging application for oral fat stem cells. A simple one-pot, hydrothermal carbonization method was used to produce SCN at a 180°C. The obtained hydrothermal carbons exhibited strong fluorescence properties due to the presence of strong polar groups, such as carboxyl, amino and amide groups in the surface. Heteroatom functionalization of the SCN leads to the property of fluorescence due to enriched nitrogen and was confirmed by X-ray photoelectron and Fourier transform infrared spectroscopy. The plate-like morphology of SCN about 35nm in size was evaluated by transmission electron microscopy. The carbon 13 nuclear magnetic resonance results revealed that nano-sized fluorescent SCN formed during carbonization and functionalization occurred through dehydration of the sericin protein. Moreover, the prepared SCNs demonstrated low toxicity and their suitability for bio-imaging applications was demonstrated to the oral fat stem cells. Overall, sericin degumming wastewater from the silk textile industry can be utilized for the production of SCNs for stem cells bio-imaging applications.


Assuntos
Carbono/química , Imagem Molecular/métodos , Nanoestruturas/química , Nitrogênio/química , Sericinas/química , Células-Tronco/citologia , Águas Residuárias/química , Animais , Bombyx , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Sobrevivência Celular , Humanos , Espectroscopia Fotoeletrônica , Porosidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
13.
ACS Appl Mater Interfaces ; 9(45): 39771-39780, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29052978

RESUMO

Granular activated carbon (GAC) materials were prepared via simple gas activation of silkworm cocoons and were coated on ZnO nanorods (ZNRs) by the facile hydrothermal method. The present combination of GAC and ZNRs shows a core-shell structure (where the GAC is coated on the surface of ZNRs) and is exposed by systematic material analysis. The as-prepared samples were then fabricated as dual-functional sensors and, most fascinatingly, the as-fabricated core-shell structure exhibits better UV and H2 sensing properties than those of as-fabricated ZNRs and GAC. Thus, the present core-shell structure-based H2 sensor exhibits fast responses of 11% (10 ppm) and 23.2% (200 ppm) with ultrafast response and recovery. However, the UV sensor offers an ultrahigh photoresponsivity of 57.9 A W-1, which is superior to that of as-grown ZNRs (0.6 A W-1). Besides this, switching photoresponse of GAC/ZNR core-shell structures exhibits a higher switching ratio (between dark and photocurrent) of 1585, with ultrafast response and recovery, than that of as-grown ZNRs (40). Because of the fast adsorption ability of GAC, it was observed that the finest distribution of GAC on ZNRs results in rapid electron transportation between the conduction bands of GAC and ZNRs while sensing H2 and UV. Furthermore, the present core-shell structure-based UV and H2 sensors also well-retained excellent sensitivity, repeatability, and long-term stability. Thus, the salient feature of this combination is that it provides a dual-functional sensor with biowaste cocoon and ZnO, which is ecological and inexpensive.

14.
Mater Sci Eng C Mater Biol Appl ; 78: 756-762, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28576046

RESUMO

Numerous growth factors account for tissue and organ development and therapeutic efficiency. Hence, the delivery of growth factors is crucial in regenerative medical practice. However, the delivery of a single factor to regenerate tissues lacks clinical utility in many current approaches. We reported the delivery of the bioactive vascular endothelial growth factor (VEGF) from novel polymeric vesicles. Polymeric vesicles were prepared from the poly(l-lysine)-g-polylysine(AA) amphiphilic graft copolymer through the conjugation of arachidic acid (AA) with poly(l-lysine) for obtaining a VEGF carrier. The prepared copolymer can form a polymersome and effectively condense with VEGF without affecting its size and surface charges. The Gaussian curve fit (GCF) of amide I band were revealed that VEGF efficiently interact through the α-helix of the amphiphilic graft copolymer rather than ß-sheet dominated poly(l-lysine). The polymersome-VEGF complex showed a considerably higher binding affinity, transfection efficiency, and less toxicity because of the peptide-based polymer backbone. Compared with the poly(l-lysine)-VEGF complex, polymersome-VEGF revealed a high secretion of VEGF and low toxicity. These polymersomes can deliver angiogenic factors in a controlled manner in tissue regeneration and biomedical engineering.


Assuntos
Polilisina/química , Ácidos Eicosanoicos , Nanopartículas , Transfecção , Fator A de Crescimento do Endotélio Vascular
15.
Mater Sci Eng C Mater Biol Appl ; 63: 678-85, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040265

RESUMO

A core-shell gold (Au) nanoparticle with improved photosensitization have been successfully fabricated using Au nanoparticles and 5,10,15,20 tetrakis pentafluorophenyl)-21H,23H-porphine (PF6) dye, forming a dyad through molecular self-assembly. Au nanoparticles were decorated on the shell and PF6 was placed in the core of the nanoparticles. Highly stable Au nanoparticles were achieved using PF6 with poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide) graft copolymer hybridization. This was compared with hybridization using cetyltrimethylammonium bromide and polyethylene glycol-b-poly(D,L-lactide) for shell formation with PF6-Au. The resulting PF6-poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide)-Au core-shell nanoparticle were utilized for photothermal and photodynamic activities. The spectroscopic analysis and zeta potential values of micelles revealed the presence of a thin Au layer coated on the PF6 nanoparticle surface, which generally enhanced the thermal stability of the gold nanoparticles and the photothermal effect of the shell. The core-shell PF6-Au nanoparticles were avidly taken up by cells and demonstrated cellular phototoxicity upon irradiation with 300W halogen lamps. The structural arrangement of PF6 dyes in the core-shell particles assures the effectiveness of singlet oxygen production. The study verifies that PF6 particles when companied with Au nanoparticles as PF6-Au have possible combinational applications in photodynamic and photothermal therapies for cancer cells because of their high production of singlet oxygen and heat.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Porfirinas/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/terapia , Nanopartículas Metálicas/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fotoquimioterapia , Fototerapia , Polímeros/química , Oxigênio Singlete/metabolismo , Espectrometria por Raios X , Raios Ultravioleta
16.
J Mater Chem B ; 2(14): 1988-1997, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261635

RESUMO

The purpose of this study was to develop and evaluate thermally responsive copolymers, which contain temperature- and pH-sensitive segments that are either alternating in or grafted onto the main chain, and to exploit their temperature-sensitive properties for ophthalmic drug delivery. Accordingly, two types of thermoresponsive copolymers-a linear poly(acrylic acid-co-N-isopropylacrylamide) random copolymer (PAAc-co-PNIPAAm) and a poly(acrylic acid-g-N-isopropylacrylamide) graft copolymer (PAAc-g-PNIPAAm)-were investigated for their thermosensitive in situ gel formation and potential applications for ophthalmic drug delivery. All the PAAc-g-PNIPAAm graft copolymers, and the linear PAAc-co-PNIPAAm copolymer with low acrylic acid contents, have an LCST of 34 °C; this is close to the surface temperature of the eye and can therefore be utilized for ophthalmic drug delivery. In addition, the PAAc-g-PNIPAAm graft copolymers showed a higher water content than the linear random copolymer; this is due to the high water adsorption ability of PAAc. The drug release dynamics of [3H]-epinephrine as a model showed that the linear random copolymer has a faster drug release, while the graft copolymers showed a more sustained release profile. The Ritger-Peppas model was used to account for the release of the epinephrine diffusion exponent 'n' which was in between 0.5 and 0.6. The release of the drug is considered mainly dependent on diffusion but other factors cannot be excluded. We suspected that the dynamics of drug release are determined by the water adsorption ability because high water content results in the formation of a larger capillary network in the polymer matrix, which promotes drug diffusion into the copolymer. The results suggest that PAAc-g-PNIPAAm graft copolymers are potential thermosensitive in situ gel-forming materials for ophthalmic drug delivery.

17.
Langmuir ; 27(2): 766-73, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21155549

RESUMO

A novel synthesis of "hairy urchin"-shaped polyaniline (PAni) and its surface coverage with nanospikes was achieved from a simple microemulsion polymerization technique in the presence of ß-cyclodextrin (ß-CD). The rodlike micelle phase was characterized, and the key factors affecting the formation of PAni nanostructures were systematically examined. Ferric chloride (FeCl(3)) has played a role as a structural directing agent to fabricate the polymer as hairy urchin-like structure/nanorods via a cooperative interaction between FeCl(3) and DoTAC in an aqueous medium. Host-guest inclusion complex of ß-cyclodextrin with aniline was used as a monomer. It has been revealed that the formation of the supramolecular complexes of polyaniline with ß-CD due to host-guest interaction is indispensable for the fabrication of these unique PAni nanostructures, and a suitable ß-CD to aniline molar ratio is essential to their exclusive formation. Different varieties of PAni nanostructures such as hairy urchin, branched particles consisting of rodlike branches, and regular rodlike particles were obtained in the presence of FeCl(3). Also, in the absence of FeCl(3), a predominant product of regular spherical particles and wirelike aggregation exhibiting faceted surfaces were obtained. The structures of polyaniline hairy urchin-like nanorods were analyzed using transmission electron microscopy (TEM). The synthesized polymer was characterized by Fourier-transform infrared spectroscopy and X-ray diffraction technique. Additionally, the relationship between the morphology and the conductivity of the PAni nanostructures was investigated as well.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/síntese química , beta-Ciclodextrinas/química , Cloretos/química , Compostos Férricos/química , Micelas , Nanoestruturas/química , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Propriedades de Superfície , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA