Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NAR Mol Med ; 1(2): ugae005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694210

RESUMO

Antibiotic resistance poses a significant global health threat, necessitating innovative strategies to combat multidrug-resistant bacterial infections. Streptococcus pneumoniae, a pathogen responsible for various infections, harbors highly conserved DNA quadruplexes in genes linked to its pathogenesis. In this study, we introduce a novel approach to counter antibiotic resistance by stabilizing G-quadruplex structures within the open reading frames of key resistance-associated genes (pmrA, recD and hsdS). We synthesized An4, a bis-anthracene derivative, using Cu(I)-catalyzed azide-alkyne cycloaddition, which exhibited remarkable binding and stabilization of the G-quadruplex in the pmrA gene responsible for drug efflux. An4 effectively permeated multidrug-resistant S. pneumoniae strains, leading to a substantial 12.5-fold reduction in ciprofloxacin resistance. Furthermore, An4 downregulated pmrA gene expression, enhancing drug retention within bacterial cells. Remarkably, the pmrA G-quadruplex cloned into the pET28a(+) plasmid transformed into Escherichia coli BL21 cells can template Cu-free bio-orthogonal synthesis of An4 from its corresponding alkyne and azide fragments. This study presents a pioneering strategy to combat antibiotic resistance by genetically reducing drug efflux pump expression through G-quadruplex stabilization, offering promising avenues for addressing antibiotic resistance.

2.
Chem Commun (Camb) ; 60(25): 3433-3436, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38444274

RESUMO

The G-quartet-like supramolecular assembly present in guanosine hydrogel templates macrocyclization between bis-azide and bis-alkyne fragments. The resulting macrocycle enhances viscoelastic properties, and strengthens the hydrogel network. This approach holds potential for the in situ synthesis of drugs and their simultaneous delivery in a stimuli-responsive manner.

3.
Angew Chem Int Ed Engl ; 62(7): e202215245, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36437509

RESUMO

Herein, we demonstrate for the first time that noncanonical DNA can direct macrocyclization-like challenging reactions to synthesize gene modulators. The planar G-quartets present in DNA G-quadruplexes (G4s) provide a size complementary reaction platform for the bio-orthogonal macrocyclization of bifunctional azide and alkyne fragments over oligo- and polymerization. G4s immobilized on gold-coated magnetic nanoparticles have been used as target templates to enable easy identification of a selective peptidomimetic macrocycle. Structurally similar macrocycles have been synthesized to understand their functional role in the modulation of gene function. The innate fluorescence of the in situ formed macrocycle has been utilized to monitor its cellular localization using a G4 antibody and its in cell formation from the corresponding azide and alkyne fragments. The successful execution of in situ macrocyclization in vitro and in cells would open up a new dimension for target-directed therapeutic applications.


Assuntos
Azidas , Quadruplex G , Replicação do DNA , DNA , Alcinos
4.
Anal Chem ; 91(12): 7705-7711, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31095910

RESUMO

Herein, we develop a competitive screening method in which G-quadruplex DNA linked magnetic nanoparticles pull down selective ligands for a particular quadruplex topology from a series of small molecules. The screening strategy is first optimized with known G-quadruplex ligands and then used with a new series of G-quadruplex interactive bis-triazolyl ligands that are synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition. The assay enables the identification of c-MYC and BCL2 G-quadruplex selective bis-triazole ligands that specifically target promoter G-quadruplexes in cancer cells.


Assuntos
Quadruplex G , Ligantes , Nanopartículas de Magnetita/química , Alcinos/química , Azidas/química , Catálise , Linhagem Celular Tumoral , Cobre/química , Reação de Cicloadição , Óxido Ferroso-Férrico/química , Humanos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA