Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 285: 117407, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049138

RESUMO

The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m3 to 80 m3) and in different size fractions of aerosol (<0.25 µm-2.5 µm). The composite system had high encapsulation efficiency (88-91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm-3 to 2.33 log CFUm-3) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 µm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.


Assuntos
Poluição do Ar em Ambientes Fechados , Quitosana , Óleos Voláteis , Aerossóis , Microbiologia do Ar , Bacillus , Humanos , Óleos de Plantas , Pseudomonas , Terpenos
2.
Ecotoxicol Environ Saf ; 188: 109826, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31732271

RESUMO

Quinclorac (QNC) is an effective but environmentally persistent herbicide commonly used in rice production. However, few studies have investigated its environmental behavior and degradation. In the present study, we carried out microbial cultures in the presence of QNC to observe changes in soil microbiota and to identify species capable of QNC degradation by using high-throughput sequencing of the 16S rRNA. Pseudomonas was the dominant genus, and Pseudomonas putida II-2 and other species were found to be capable of mineralizing QNC as a source of carbon and energy. However, this degradation rate was slow, only reaching 51.5 ± 1.6% for 7 days at 30 °C on QNC + minimal salt medium. Achromobacter sp. QC36 co-metabolized QNC when rice straw was added into the mineral salt medium containing QNC, and a mixed culture of both strains could mineralize approximately 92% of the 50 mg/L QNC after 5 days of cultivation in the presence of rice straw, at 25-35 °C and pH 6.0-8.0. Non-phytotoxicity of tobacco after degradation of QNC by mixed strains was evidenced in a pot experiment. These results suggest that this mixed culture may be useful in QNC bioremediation and can be used as a bio-formulation for agro-economical and industrial application.


Assuntos
Achromobacter/crescimento & desenvolvimento , Herbicidas/análise , Pseudomonas putida/crescimento & desenvolvimento , Quinolinas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Achromobacter/metabolismo , Biodegradação Ambiental , Oryza/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , RNA Ribossômico 16S/genética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA