Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Sci Rep ; 13(1): 19306, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935784

RESUMO

Recurrent population irruptions of Pacific crown-of-thorns starfish (CoTS, Acanthaster cf. solaris) are among the foremost causes of coral mortality on Australia's Great Barrier Reef (GBR). Early intervention during the initiation of new population irruptions represents the best opportunity to effectively manage this threat. However, current survey methods are not sufficiently sensitive to detect changes in CoTS densities during the early onset of population irruptions. Using scooter-assisted large area diver-based (SALAD) surveys, this study revealed increasing densities of CoTS at Lizard Island from 2019 to 2022. Inferred densities of adult CoTS (which account for distinct sets of observed feeding scars where starfish were not detected) increased from 4.90 ha-1 (± 0.85 SE) in 2019 to 17.71 ha-1 (± 2.3 SE) in 2022. A wide range of size classes were recorded suggesting that recruitment over several years is contributing to increasing densities. Importantly, the sustained density increases reported here denote that renewed CoTS population irruptions may soon become fully established at Lizard Island and more broadly in the northern GBR, especially without early intervention through effective population management.


Assuntos
Antozoários , Recifes de Corais , Animais , Estrelas-do-Mar
2.
Sci Rep ; 13(1): 17119, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816798

RESUMO

Population irruptions of crown-of-thorns starfish (COTS; Acanthaster spp.) remain a major cause of coral reef degradation throughout the Pacific and Indian Oceans and are inherently modulated by larval settlement and recruitment success. Gregarious larval settlement, as exhibited by many other ecologically important marine invertebrates, can catalyse population growth and replenishment. However, whether conspecific cues induce or influence the settlement of COTS larvae remains a critical information gap. This experimental study examined the induction of COTS settlement in response to a range of conspecific cues associated with early- and late-stage herbivorous juveniles, corallivorous juveniles and adults. Competent COTS larvae were generally not induced to settle by the presence of conspecifics or cues associated with conspecifics, while the settlement success of COTS in the presence of coralline algae was not inhibited or enhanced by adding conspecific conditioned seawater. Rather than being reinforced by gregarious settlement, the recruitment of COTS populations appears dependent on associative settlement cues (i.e., coralline algae and/or associated microbial communities) signalling suitable benthic habitat.


Assuntos
Antozoários , Sinais (Psicologia) , Animais , Larva , Recifes de Corais , Água do Mar , Estrelas-do-Mar
3.
Ecol Evol ; 13(8): e10307, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37565029

RESUMO

Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly variable across controlled laboratory-based studies. Accordingly, synthesis of these studies will facilitate the better understanding of broad patterns in responses of echinoderms to ocean warming. Herein, a meta-analysis incorporating the results of 85 studies (710 individual responses) is presented, exploring the effects of warming on various performance predictors. The mean responses of echinoderms to all magnitudes of warming were compared across multiple biological responses, ontogenetic life stages, taxonomic classes, and regions, facilitated by multivariate linear mixed effects models. Further models were conducted, which only incorporated responses to warming greater than the projected end-of-century mean annual temperatures at the collection sites. This meta-analysis provides evidence that ocean warming will generally accelerate metabolic rate (+32%) and reduce survival (-35%) in echinoderms, and echinoderms from subtropical (-9%) and tropical (-8%) regions will be the most vulnerable. The relatively high vulnerability of echinoderm larvae to warming (-20%) indicates that this life stage may be a significant developmental bottleneck in the near-future, likely reducing successful recruitment into populations. Furthermore, asteroids appear to be the class of echinoderms that are most negatively affected by elevated temperature (-30%). When considering only responses to magnitudes of warming representative of end-of-century climate change projections, the negative impacts on asteroids, tropical species and juveniles were exacerbated (-51%, -34% and -40% respectively). The results of these analyses enable better predictions of how keystone and invasive echinoderm species may perform in a warmer ocean, and the possible consequences for populations, communities and ecosystems.

4.
Reg Environ Change ; 23(2): 66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125023

RESUMO

Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia-Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds.

5.
Glob Chang Biol ; 29(12): 3318-3330, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020174

RESUMO

Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.


Assuntos
Antozoários , Alga Marinha , Animais , Humanos , Recifes de Corais , Ecossistema , Alga Marinha/fisiologia , Antozoários/fisiologia , Oceano Pacífico
6.
Sci Rep ; 13(1): 1448, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702849

RESUMO

Coral reefs are highly threatened environs subject to ongoing unprecedented degradation as a result of anthropogenic activities. Given the existential threat to coral reef ecosystems, extractive industries that make use of coral reef resources, are facing significant public and political pressure to quantify and justify their environmental impact. In Australia, hundreds of thousands of live scleractinian (hard) corals are harvested annually directly from the wild to supply the growing international marine aquarium trade. Many of the most popular and high value aquarium corals are believed to be slow growing, which would make them particularly vulnerable to over-fishing. Corals present a number of unique challenges for fisheries management, not least of which, is the marked variation in the size of corals, which may be harvested in whole or in part. This issue is further compounded because harvest limits are typically weight-based, but there is very limited information on the standing biomass of corals in targeted stocks. Herein, we describe size-weight relationships for some of Australia's most heavily targeted coral species (Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia glabrescens, Homophyllia cf. australis, Micromussa lordhowensis, Trachyphyllia geoffroyi), which allows estimation of standing biomass from transect surveys. This work represents an important first step in the development of ecologically sound management strategies by bridging the gap between catch reporting and stock assessments.


Assuntos
Antozoários , Animais , Ecossistema , Biomassa , Pesqueiros , Conservação dos Recursos Naturais , Recifes de Corais , Austrália
7.
Biol Lett ; 19(1): 20220399, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693424

RESUMO

Population irruptions of crown-of-thorns starfish (COTS) cause extensive degradation of coral reefs, threatening the structure and function of these important ecosystems. For population irruptions to initiate and spread, large numbers of planktonic larvae have to successfully transition into their benthic life-history stage (i.e. settlement), whereby larval behaviour and the presence of settlement cues may shape spatial patterns of recruitment and adult densities. Our results demonstrate that a wide range of coralline algae species induce COTS larvae to settle; however, the capacity to promote settlement success varied manyfold among algal species, ranging from greater than 90% in Melyvonnea cf. madagascariensis to less than 2% in Lithophyllum cf. kotschyanum and two Porolithon species at 24 h. Because many coralline algae species that promote high settlement success are prevalent in shallow reef habitats, our findings challenge the hypothesis that COTS larvae predominantly settle in deep water. Considering both larval behaviour and algal ecology, this study highlights the ecological significance of coralline algae communities in driving recruitment patterns of COTS. More specifically, the local abundance of highly inductive coralline algae (especially, Melyvonnea cf. madagascariensis) may explain some of the marked spatial heterogeneity of COTS populations and the incidence of population irruptions.


Assuntos
Ecossistema , Rodófitas , Animais , Larva , Sinais (Psicologia) , Recifes de Corais , Estrelas-do-Mar
9.
Evol Appl ; 15(8): 1221-1235, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051464

RESUMO

Many coral reef fishes display remarkable genetic and phenotypic variation across their geographic ranges. Understanding how historical and contemporary processes have shaped these patterns remains a focal question in evolutionary biology since they reveal how diversity is generated and how it may respond to future environmental change. Here, we compare the population genomics and demographic histories of a commercially and ecologically important coral reef fish, the common coral grouper (Plectropomus leopardus [Lacépède 1802]), across two adjoining regions (the Great Barrier Reef; GBR, and the Coral Sea, Australia) spanning approximately 14 degrees of latitude and 9 degrees of longitude. We analysed 4548 single nucleotide polymorphism (SNP) markers across 11 sites and show that genetic connectivity between regions is low, despite their relative proximity (~100 km) and an absence of any obvious geographic barrier. Inferred demographic histories using 10,479 markers suggest that the Coral Sea population was founded by a small number of GBR individuals and that divergence occurred ~190 kya under a model of isolation with asymmetric migration. We detected population expansions in both regions, but estimates of contemporary effective population sizes were approximately 50% smaller in Coral Sea sites, which also had lower genetic diversity. Our results suggest that P. leopardus in the Coral Sea have experienced a long period of isolation that precedes the recent glacial period (~10-120 kya) and may be vulnerable to localized disturbances due to their relative reliance on local larval replenishment. While it is difficult to determine the underlying events that led to the divergence of the Coral Sea and GBR lineages, we show that even geographically proximate populations of a widely dispersed coral reef fish can have vastly different evolutionary histories.

10.
J Exp Biol ; 225(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039674

RESUMO

Current understanding of behavioural thermoregulation in aquatic ectotherms largely stems from systems such as 'shuttle boxes', which are generally limited in their capacity to test large-bodied species. Here, we introduce a controlled system that allows large aquatic ectotherms to roam freely in a tank at sub-optimal temperatures, using thermal refuges to increase body temperature to their thermal optimum as desired. Of the 10 coral grouper (Plectropomus leopardus; length ∼400 mm) implanted with thermal loggers, three fish maintained themselves at the ambient tank temperature of 17.5-20.5°C for the entire 2-4 days of the trial. Of the other seven fish, body temperature never exceeded ∼21.5°C, which was well below the temperature available in the thermal refuges (∼31°C) and below the species' optimal temperature of ∼27°C. This study adds to a growing literature documenting an unexpected lack of behavioural thermoregulation in aquatic ectotherms in controlled, heterothermal environments.


Assuntos
Antozoários , Bass , Animais , Regulação da Temperatura Corporal , Recifes de Corais , Temperatura
11.
Sci Total Environ ; 851(Pt 1): 158143, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995149

RESUMO

Outbreaks of the corallivorous Crown-of-Thorns Seastar (CoTS) Acanthaster cf. solaris contribute significantly to coral reef loss. Control of outbreaks is hampered because standard monitoring techniques do not detect outbreaks at early (low density) stages, thus preventing early intervention. We previously demonstrated that eDNA monitoring can detect CoTS at intermediate densities. Here, we test whether detection probability can be improved by (i) targeted site selection or collection at specific times and (ii) moving from an average eDNA copy number approach (based on the limit of quantification) to a presence/absence approach (based on the limit of detection). Using a dataset collected over three years and multiple reef sites, we demonstrated that adding water residence age, sea surface level and temperature into generalized linear models explained low amounts of variance of eDNA copy numbers. Site specific CoTS density, by contrast, was a significant predictor for eDNA copy numbers. Bayesian multi-scale occupancy modelling of the presence/absence data demonstrated that the probability of sample capture (θ) on most reefs with intermediate or high CoTS densities was >0.8. Thus, confirming CoTS presence on these reefs would only require 2-3 samples. Sample capture decreased with decreasing CoTS density. Collecting ten filters was sufficient to reliably (based on the lower 95 % Credibility Interval) detect CoTS below nominal outbreak levels (3 Ind. ha-1). Copy number-based estimates may be more relevant to quantify CoTS at higher densities. Although water residence age did contribute little to our models, sites with higher residence times may serve as sentinel sites accumulating eDNA. The approach based on presence or absence of eDNA facilitates eDNA monitoring to detect CoTS densities below outbreak thresholds and we continue to further develop this method for quantification.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Teorema de Bayes , Recifes de Corais , Surtos de Doenças , Estrelas-do-Mar/genética , Água
12.
Mar Environ Res ; 177: 105633, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35472572

RESUMO

Although hard corals (order Scleractinia) are listed in Appendix II of the Convention for the International Trade in Endangered Species (CITES), there is significant ongoing wild harvest and international trade, mostly for the aquarium industry. Acropora corals account for the majority of aquarium corals harvested and traded, but are also extremely vulnerable to fisheries-independent threats, especially climate-induced coral bleaching. Reconciling effects of coral harvesting is complicated as harvest limits are based on weight, while there is limited data on standing biomass of Acropora from different reef environments. Here, a management-friendly methodology that allows for quantification of Acropora spp. biomass is described and demonstrated, thus providing means for the development and implementation of a rigorous sustainable harvest strategy. We establish size-weight relationships for four growth forms of Acropora spp. harvested from Australia's Great Barrier Reef, to facilitate estimates of harvestable biomass and better understand the ecological context of current weight-based harvest levels and limits. Using these relationships, and field-based sampling at 12 sites across seven distinct reefs, the estimated biomass of Acropora spp. ranges from 0.12 kg ⋅ m-2 to 4.7 kg ⋅ m-2. These estimates necessitate further consideration of catch composition and the specific abundance of individual species that are heavily harvested, and how impacts of current harvest practices interact with species-specific vulnerability to climate change and other escalating human pressures contributing to the degradation of coral reef ecosystems. This study is a crucial first step towards quantifying the ecological impacts of the fishery to develop management strategies that are underpinned by research.


Assuntos
Antozoários , Animais , Austrália , Biomassa , Comércio , Recifes de Corais , Ecossistema , Internacionalidade
13.
Sci Rep ; 11(1): 18787, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552159

RESUMO

Thermal-stress events have changed the structure, biodiversity, and functioning of coral reefs. But how these disturbances affect the dynamics of individual coral colonies remains unclear. By tracking the fate of 1069 individual Acropora and massive Porites coral colonies for up to 5 years, spanning three bleaching events, we reveal striking genus-level differences in their demographic response to bleaching (mortality, growth, and recruitment). Although Acropora colonies were locally extirpated, substantial local recruitment and fast growth revealed a marked capacity for apparent recovery. By contrast, almost all massive Porites colonies survived and the majority grew in area; yet no new colonies were detected over the 5 years. Our results highlight contrasting dynamics of boom-and-bust vs. protracted declines in two major coral groups. These dangerous demographics emphasise the need for caution when documenting the susceptibility and perceived resistance or recovery of corals to disturbances.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Antozoários/metabolismo , Mudança Climática , Recifes de Corais , Fatores de Tempo
14.
J Fish Biol ; 99(5): 1602-1612, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34331333

RESUMO

Environmental temperature is an important determinant of physiological processes and life histories in ectotherms. Over latitudinal scales, variation in temperature has been linked to changes in life-history traits and demographic rates, with growth and mortality rates generally being greatest at low latitudes, and longevity and maximum length being greater at higher latitudes. Using the two-spined angelfish, Centropyge bispinosa, as our focal species, we compared growth patterns, growth rates, longevity, mortality, asymptotic length and maximum length across 22 reefs that span 13° of latitude within the Great Barrier Reef Marine Park (GBRMP) and the Coral Sea Marine Park (CSMP), Australia. We found no predictable latitudinal variation in mortality rates, growth patterns, growth rates, asymptotic or maximum length of C. bispinosa at regional to biogeographic scales. However, C. bispinosa consistently exhibited reduced longevity at lower, warmer latitudes within the CSMP. The greatest differences in mean maximum length of C. bispinosa were between continental (GBRMP) and oceanic (central CSMP) reefs of similar latitude, with individuals being larger on average on continental versus oceanic reefs. The lack of predictable life-history and demographic variation in C. bispinosa across a 13° latitudinal gradient within the CSMP, coupled with differences in mean maximum length between continental and oceanic reefs at similar latitudes, suggest that local environmental conditions have a greater influence than environmental temperature on the demographic rates and life-history traits of C. bispinosa.


Assuntos
Antozoários , Perciformes , Animais , Austrália , Recifes de Corais , Demografia , Peixes
15.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972407

RESUMO

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Mudança Climática , Recifes de Corais , Animais , Antozoários/química , Carbonato de Cálcio/química , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
16.
Biol Bull ; 241(3): 347-358, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35015619

RESUMO

AbstractClimate change and population irruptions of crown-of-thorns sea stars (Acanthaster sp.) are two of the most pervasive threats to coral reefs. Yet there has been little consideration regarding the synergies between ocean warming and the coral-feeding sub-adult and adult stages of this asteroid. Here we explored the thermosensitivity of the aforementioned life stages by assessing physiological responses to acute warming. Thermal sensitivity was assessed based on the maximal activity of enzymes involved in aerobic (citrate synthase) and anaerobic (lactate dehydrogenase) metabolic pathways, as well as the standard metabolic rate of sub-adult and adult sea stars. In both life stages, citrate synthase activity declined with increasing temperature from 15 °C to 40 °C, with negligible activity occurring >35 °C. On the other hand, lactate dehydrogenase activity increased with temperature from 20 °C to 45 °C, indicating a greater reliance on anaerobic metabolism in a warmer environment. The standard metabolic rate of sub-adult sea stars increased with temperature throughout the testing range (24 °C to 36 °C). Adult sea stars exhibited evidence of thermal stress, with metabolic depression occurring from 33 °C. Here, we demonstrate that crown-of-thorns sea stars are sensitive to warming but that adults, and especially sub-adults, may have some resilience to short-term marine heatwaves in the near future.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Recifes de Corais , Estrelas-do-Mar/fisiologia , Temperatura
17.
Biol Bull ; 241(3): 330-346, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35015620

RESUMO

AbstractCrown-of-thorns sea stars (Acanthaster sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of Acanthaster sp. Renewed efforts to advance understanding and management of Pacific crown-of-thorns sea stars (Acanthaster sp.) on Australia's Great Barrier Reef require explicit consideration of relevant and tractable knowledge gaps. Drawing on established horizon scanning methodologies, this study identified contemporary knowledge gaps by asking active and/or established crown-of-thorns sea star researchers to pose critical research questions that they believe should be addressed to improve the understanding and management of crown-of-thorns sea stars on the Great Barrier Reef. A total of 38 participants proposed 246 independent research questions, organized into 7 themes: feeding ecology, demography, distribution and abundance, predation, settlement, management, and environmental change. Questions were further assigned to 48 specific topics nested within the 7 themes. During this process, redundant questions were removed, which reduced the total number of distinct research questions to 172. Research questions posed were mostly related to themes of demography (46 questions) and management (48 questions). The dominant topics, meanwhile, were the incidence of population irruptions (16 questions), feeding ecology of larval sea stars (15 questions), effects of elevated water temperature on crown-of-thorns sea stars (13 questions), and predation on juveniles (12 questions). While the breadth of questions suggests that there is considerable research needed to improve understanding and management of crown-of-thorns sea stars on the Great Barrier Reef, the predominance of certain themes and topics suggests a major focus for new research while also providing a roadmap to guide future research efforts.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Austrália , Biologia , Recifes de Corais , Humanos
18.
Biol Bull ; 241(3): 271-285, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35015627

RESUMO

AbstractPopulation irruptions of the western Pacific crown-of-thorns sea star (Acanthaster sp.) are a perennial threat to coral reefs and may be initiated by fluctuations in reproductive or settlement success. However, the processes dictating their early life history, particularly larval settlement, remain poorly understood given limitations in sampling larvae and newly settled juveniles in the field. Here, we introduce an innovative method to measure crown-of-thorns sea star settlement, using artificial settlement collectors and droplet digital polymerase chain reaction based on crown-of-thorns sea star-specific mitochondrial DNA primers. This study demonstrated the utility of this method and explored temporal and spatial patterns of crown-of-thorns sea star settlement on the Great Barrier Reef from 2016 to 2020. Settlement varied considerably between sampling periods at Rib Reef and peaked between October 2016 and January 2017. Our results further suggest that crown-of-thorns sea star larvae readily settle in shallow reef environments, with no preferential settlement detected between depths tested (4-12 m). Substantial variation between Great Barrier Reef regions was revealed in 2019-2020, because collectors deployed on reefs in the central Great Barrier Reef were >10 times as likely to record newly settled crown-of-thorns sea stars as reefs in the northern Great Barrier Reef near Lizard Island. The trends reported here add to our understanding of this critical life-history stage; however, further method validation and larger-scale studies are needed to address pertinent information gaps, such as the stock-recruitment dynamics of this species. Most importantly, fluctuations in crown-of-thorns sea star settlement can now be detected using this sampling protocol, which demonstrates its utility in heralding new and renewed population irruptions of this destructive sea star.


Assuntos
Antozoários , Estrelas-do-Mar , Animais , Recifes de Corais , DNA , Larva/genética , Reprodução , Estrelas-do-Mar/genética
19.
Adv Mar Biol ; 87(1): 223-258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293012

RESUMO

Outbreaks of the coral eating crown-of-thorns starfish (COTS; Acanthasts cf. solaris) occur in cyclical waves along the Great Barrier Reef (GBR), contributing significantly to the decline in hard coral cover over the past 30 years. One main difficulty faced by scientists and managers alike, is understanding the relative importance of contributing factors to COTS outbreaks such as increased nutrients and water quality, larval connectivity, fishing pressure, and abiotic conditions. We analysed COTS abundances from the most recent outbreak (2010-2018) using both boosted regression trees and generalised additive models to identify key predictors of COTS outbreaks. We used this approach to predict the suitability of each reef on the GBR for COTS outbreaks at three different levels: (1) reefs with COTS present intermittently (Presence); (2) reefs with COTS widespread and present in most samples and (Prevalence) (3) reefs experiencing outbreak levels of COTS (Outbreak). We also compared the utility of two auto-covariates accounting for spatial autocorrelation among observations, built using weighted inverse distance and weighted larval connectivity to reefs supporting COTS populations, respectively. Boosted regression trees (BRT) and generalised additive mixed models (GAMM) were combined in an ensemble model to reduce the effect of model uncertainty on predictions of COTS presence, prevalence and outbreaks. Our results from best performing models indicate that temperature (Degree Heating Week exposure: relative importance=13.1%) and flood plume exposure (13.0%) are the best predictors of COTS presence, variability in chlorophyll concentration (12.6%) and flood plume exposure (8.2%) best predicted COTS prevalence and larval connectivity potential (22.7%) and minimum sea surface temperature (8.0%) are the best predictors of COTS outbreaks. Whether the reef was open or closed to fishing, however, had no significant effect on either COTS presence, prevalence or outbreaks in BRT results (<0.5%). We identified major hotspots of COTS activity primarily on the mid shelf central GBR and on the southern Swains reefs. This study provides the first empirical comparison of the major hypotheses of COTS outbreaks and the first validated predictions of COTS outbreak potential at the GBR scale incorporating connectivity, nutrients, biophysical and spatial variables, providing a useful aid to management of this pest species on the GBR.


Assuntos
Antozoários , Recifes de Corais , Estrelas-do-Mar , Animais , Surtos de Doenças , Larva , Qualidade da Água
20.
Adv Mar Biol ; 87(1): 259-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293013

RESUMO

Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have been responsible for 40% of the decline in coral cover on the GBR over the last 35 years. With the intensity and frequency of bleaching and cyclonic disturbances increasing, effectively managing these outbreaks may allow reefs an opportunity to recover from these cumulative impacts. Significant research effort has been directed toward developing regional scale models for COTS outbreaks, but these have yet to be fit explicitly to long term time series at the scale of the entire GBR, nor do previous research efforts incorporate explicit estimates of cumulative disturbance history. We developed a stage-based metapopulation model for COTS at a 1×1km resolution using long-term time series and modelled estimates of COTS larval connectivity, nutrient concentrations and important vital rates estimated from the literature. We coupled this metapopulation model to an existing spatially explicit model of coral cover growth, disturbance and recovery across the GBR from 1996 to 2017 to create a metacommunity model. Our results were validated against a spatially and temporally extensive dataset of COTS and coral cover across the GBR, predicting an average coral decline of 1.3% p.a. across the GBR, and accurately recreating coral cover trajectories (mean prediction error=7.1%) and COTS outbreak classification (accuracy=80%). Sensitivity analyses revealed that overall model accuracy was most sensitive to larval predation (boosted regression tree; relative importance=46.7%) and two parameters defining juvenile density dependent mortality (21.5% and 17.5%). The COTS model underestimated peak COTS densities particularly in the Swains and Townsville sectors of the reef, while overestimating COTS density during non-outbreak years. A better understanding of inter-annual variability in larval connectivity, and regionally variable density dependence for adult COTS life stages may improve model fit during these extreme outbreak events. Our model provides a platform to develop upon, and with improvements to estimates of larval connectivity and larval predation could be used to simulate the effects of implementing varying combinations of COTS interventions. This research highlights the importance of the early life history stages of COTS as drivers of outbreak dynamics, emphasizing the need for further empirical research to estimate these parameters.


Assuntos
Antozoários , Recifes de Corais , Estrelas-do-Mar , Animais , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA