Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806819

RESUMO

Herein, we investigated the effect of the support modification (Sibunit carbon) with diazonium salts of Pd and Pd-Au catalysts on furfural hydrogenation under 5 bars of H2 and 50 °C. To this end, the surface of Sibunit (Cp) was modified with butyl (Cp-Butyl), carboxyl (Cp-COOH) and amino groups (Cp-NH2) using corresponding diazonium salts. The catalysts were synthesized by the sol immobilization method. The catalysts as well as the corresponding supports were characterized by Fourier transform infrared spectroscopy, N2 adsorption-desorption, inductively coupled plasma atomic emission spectroscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Hammet indicator method and X-ray photoelectron spectroscopy. The analysis of the results allowed us to determine the crucial influence of surface chemistry on the catalytic behavior of the studied catalysts, especially regarding selectivity. At the same time, the structural, textural, electronic and acid-base properties of the catalysts were practically unaffected. Thus, it can be assumed that the modification of Sibunit with various functional groups leads to changes in the hydrophobic/hydrophilic and/or electrostatic properties of the surface, which influenced the selectivity of the process.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335722

RESUMO

The different activity of a 1% Pd/carbon catalyst towards aromatic and aliphatic aldehydes hydrogenation has been explored by 13C NMR relaxation. The ratio between T1 relaxation times of adsorbed (ads) and free diffusing (bulk) molecules (T1ads/T1bulk) can be used as an indicator of the relative strength of interaction between the reactant and the catalytic surface, where the lower the T1ads/T1bulk, the higher the adsorption strength. It can be seen that 1% Pd/carbon showed a reverse catalytic behaviour towards benzaldehyde and octanal hydrogenation, which can be explained by analysing the T1 relaxation times related to each substrate in the presence of the catalyst. Comparing and correlating the different T1ads/T1bulk values, we were able to prove that the different catalytic results mainly depend on the contrasting adsorption behaviour of substrates on the catalyst. Moreover, the role of the solvent has been disclosed, as NMR results revealed that the adsorption of the reactants was strongly affected by the choice of solvent, which is revealed to be critical in modulating catalytic activity. As a consequence, T1ads/T1bulk measurements can provide a guide to the selection of appropriate reaction conditions for improving catalytic activity.

3.
Ind Eng Chem Res ; 61(8): 2963-2972, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35264822

RESUMO

The CO2 photoreduction is a promising way to convert one of the most abundant greenhouse gases to valuable chemicals. The photoreduction in the liquid phase is limited by the low solubility of CO2 in water, but this point is overcome here by using an innovative photoreactor, which allows one to work up to pressures of 20 bar, improving the overall productivity. The photoreduction was performed in the presence of Na2SO3 and using in primis commercial titanium dioxide (P25) and a set of titania catalysts functionalized by surface deposition of either monometallic or bimetallic cocatalysts. The gaseous products were hydrogen and traces of CO, while, in the liquid phase, formic acid/formate, formaldehyde and methanol were quantitatively detected. The pH was observed to shift the products distribution. A neutral environment led mainly to hydrogen and methanol, while, at pH 14, formate was the most abundant compound. The trend for monometallic cocatalysts showed enhanced productivity when using noble metals (i.e., gold and platinum). In order to limit the cost of the catalytic material, bimetallic cocatalysts were explored, adding titania with Au+Ag or Au+Pt. This may open to the possibility of performing the reaction with a smaller amount of the most expensive metals. In the end, we have expressed some conclusions on the cost of the photocatalysts here employed, to support the overall feasibility assessment of the process.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535585

RESUMO

To obtain selective hydrogenation catalysts with low noble metal content, two carbon-supported Mo-Pt bimetallic catalysts have been synthesized from two different molybdenum precursors, i.e., Na2MoO4 and (NH4)6Mo7O24. The results obtained by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) combined with the presence and strength of acid sites clarified the different catalytic behavior toward cinnamaldehyde hydrogenation. After impregnating the carbon support with Mo precursors, each sample was used either as is or treated at 400 °C in N2 flow, as support for Pt nanoparticles (NPs). The heating treatment before Pt deposition had a positive effect on the catalytic performance. Indeed, TEM analyses showed very homogeneously dispersed Pt NPs only when they were deposited on the heat-treated Mo/C supports, and XPS analyses revealed an increase in both the exposure and reduction of Pt, which was probably tuned by different MoO3/MoO2 ratios. Moreover, the different acid properties of the catalysts resulted in different selectivity.

5.
Nanomaterials (Basel) ; 10(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168904

RESUMO

The effect of support, stabilizing agent, and Pd nanoparticles (NPs) size was studied for sodium muconate and t,t-muconic acid hydrogenation to bio-adipic acid. Three different activated carbons (AC) were used (Norit, KB, and G60) and carbon morphology did not affect the substrate conversion, but it greatly influenced the adipic acid yield. 1% Pd/KB Darco catalyst, which has the highest surface area and Pd surface exposure, and the smallest NPs size displayed the highest activity. Furthermore, the effect of the amount of the protective agent was studied varying metal/protective agent weight ratios in the range of 1/0.00-1/1.20, using KB as the chosen support. For sodium muconate reduction 1% Pd/KB_1.2 catalyst gave the best results in terms of activity (0.73 s-1), conversion, and adipic acid yield (94.8%), while for t,t-muconic acid hydrogenation the best activity result (0.85 s-1) was obtained with 1% Pd/KB_0.0 catalyst. Correlating the results obtained from XPS and TEM analyses with catalytic results, we found that the amount of PVA (polyvinyl alcohol) influences mean Pd NPs size, Pd(0)/Pd(II) ratio, and Pd surface exposure. Pd(0)/Pd(II) ratio and Pd NPs size affected adipic acid yield and activity during sodium muconate hydrogenation, respectively, while adipic acid yield was related by exposed Pd amount during t,t-muconic acid hydrogenation. The synthesized catalysts showed higher activity than commercial 5% Pd/AC.

6.
Molecules ; 24(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654554

RESUMO

Carbon nanofibers (CNFs) have been functionalized by introducing O, N, and P containing groups in order to investigate the effect of support functionalization in Ru catalysed hydroxymethyl furfural (HMF) and levulinic acid (LA) hydrogenation. In the case of HMF, despite the fact that no effect on selectivity was observed (all the catalysts produced selectively gamma-valerolactone (GVL)), the functionalization strongly affected the activity of the reaction. O-containing and N-containing supports presented a higher activity compared to the bare support. On the contrary, in HMF hydrogenation, functionalization of the support did not have a beneficial effect on the activity of a Ru-catalysed reaction with respect to bare support and only CNFs-O behaved similarly to bare CNFs. In fact, when CNFs-N or CNFs-P were used as the supports, a lower activity was observed, as well as a change in selectivity in which the production of ethers (from the reaction with the solvent) greatly increased.


Assuntos
Carbono/química , Celulose/química , Nanofibras/química , Furaldeído/química , Hidrogenação , Ácidos Levulínicos/química , Estrutura Molecular , Nitrogênio/química , Oxigênio/química , Fósforo/química , Rutênio/química
7.
Molecules ; 23(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103518

RESUMO

We report the use of Ru catalysts supported in the activated carbon (AC) and carbon nanofibers (CNFs) for the selective production of liquid fuel dimethylfuran (DMF) and fuel additives alkoxymethyl furfurals (AMF). Parameters such as the reaction temperature and hydrogen pressure were firstly investigated in order to optimise the synthesis of the desired products. Simply by using a different support, the selectivity of the reaction drastically changed. DMF was produced with AC as support, while a high amount of AMF was produced when CNFs were employed. Moreover, the reusability of the catalysts was tested and deactivation phenomena were identified and properly addressed. Further studies need to be performed in order to optimise the stability of the catalysts.


Assuntos
Furaldeído/análogos & derivados , Rutênio/química , Carbono/química , Catálise , Furaldeído/química , Hidrogenação , Nanofibras/química , Pressão , Temperatura
8.
Nanomaterials (Basel) ; 8(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154374

RESUMO

The selective oxidation of veratryl alcohol (VA), a model compound of lignin, with oxygen molecules to produce veratraldehyde (VAld) was studied over monometallic Au, Pd, and bimetallic Au:Pd nanoparticles supported on a Ce0.62Zr0.38O2 mixed oxide for the first time. These bimetallic Au-Pd catalysts with Au:Pd molar ratios from 0.4 to 4.3 were synthesized by the sol-immobilization method. Furthermore, all the catalysts were characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 physisorption, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging, energy dispersive X-ray spectroscopy (EDXS), and temperature programmed reduction (TPR) techniques. A synergistic effect between gold and palladium was observed over all the bimetallic catalysts in a wide range of studied Au:Pd ratios. Remarkably, the optimum Au:Pd ratio for this reaction was 1.4 with a turnover frequency of almost six times larger than for the monometallic gold and palladium catalysts. Selectivity to veratraldehyde was higher than 99% for the monometallic Au, Pd, and all the bimetallic Au-Pd catalysts, and stayed constant during the reaction time.

10.
RSC Adv ; 8(27): 15202-15206, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35541363

RESUMO

This work focuses on understanding the influence of the conditions used in the calcination step of palladium catalysts on the performance of this catalyst in the reductive amination of halogen-containing substrates. The results show that increasing the calcination temperatures (from 100 °C to 400 °C) has a detrimental effect on catalytic activity but a strong positive effect on the selectivity (from 45 to 96%), avoiding the undesired dehalogenation reaction. TEM investigation showed that the reason for the different selectivity can be addressed to different Pd mean particles size and particle size distribution. In particular, larger Pd particles obtained at the highest calcination temperature (400 °C) showed the best selectivity to halogenated benzylamines (96%), with a good stability in terms of both activity and selectivity as confirmed by performing recycling tests.

11.
Materials (Basel) ; 10(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29258170

RESUMO

Gold nanoparticles were prepared by sol immobilization (AuSI) or deposition precipitation (AuDP), then deposited on NiO and commercial TiO2 (P25). The Au/NiO catalysts showed higher activity and yield to the secondary amine, compared to Au/TiO2 catalysts, when tested for the reductive amination of benzyl alcohol with isopropylamine. We attribute this result to a synergistic effect between Au and NiO. Moreover, as a result of the protective effect of the polyvinyl alcohol used in the sol immobilization synthesis, the gold nanoparticles on NiO demonstrate an increased resistance to structural changes during the reaction. This effect results in enhanced catalytic efficiency in terms of activity, and better stability against deactivation.

12.
Chem Soc Rev ; 45(18): 4953-94, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27200435

RESUMO

Au-based catalysts have established a new important field of catalysis, revealing specific properties in terms of both high activity and selectivity for many reactions. However, the correlation between the morphology and the activity of the catalyst is not always clear although much effort has been addressed to this task. To some extent the problem relates to the complexity of the characterisation techniques that can be applied to Au catalyst and the broad range of ways in which they can be prepared. Indeed, in many reports only a few characterization techniques have been used to investigate the potential nature of the active sites. The aim of this review is to provide a critical description of the techniques that are most commonly used as well as the more advanced characterization techniques available for this task. The techniques that we discuss are (i) transmission electron microscopy methods, (ii) X-ray spectroscopy techniques, (iii) vibrational spectroscopy techniques and (iv) chemisorption methods. The description is coupled with developing an understanding of a number of preparation methods. In the final section the example of the supported AuPd alloy catalyst is discussed to show how the techniques can gain an understanding of an active oxidation catalyst.

13.
Molecules ; 21(3): 261, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927043

RESUMO

Au-based catalysts are widely used in important processes because of their peculiar characteristics. The catalyst performance depends strongly on the nature and structure of the metal nanoparticles, especially in the case of bimetallic catalysts where synergistic effects between the two metals can be occasionally seen. In this paper, it is shown that electrochemical characterisation (cyclovoltammetry CV and electrochemical impedance spectroscopy EIS) of AuPd systems can be used to determine the presence of an electronic interaction between the two metals, thus providing a strong support in the determination of the nature of the synergy between Au and Pd in the liquid phase oxidation of alcohols. However, it seems likely that the strong difference in the catalytic behavior between the single metals and the bimetallic system is connected not only to the redox behaviour, but also to the energetic balance between the different elementary steps of the reaction.


Assuntos
Glicerol/química , Ouro/química , Nanopartículas Metálicas/química , Catálise , Técnicas Eletroquímicas , Oxirredução , Paládio/química , Tamanho da Partícula , Platina/química
14.
Chem Rec ; 16(5): 2187-2197, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26915808

RESUMO

Carbon-based materials constitute a large family of materials characterized by some peculiarities such as resistance to both acidic and basic environments, flexibility of structure, and surface chemical groups. Moreover, they can be deeply modified by simple organic reactions (acid-base or redox) to acquire different properties. In particular, the introduction of N-containing groups, achieved by post-treatments or during preparation of the material, enhances the basic properties. Moreover, it has been revealed that the position and chemical nature of the N-containing groups is important in determining the interaction with metal nanoparticles, and thus, their reactivity. The modified activity was addressed to a different metal dispersion. Moreover, experiments on catalysts, showing the same metal dispersion, demonstrated that the best results were obtained when N was embedded into the carbon structure and not very close to the metal active site.

15.
Materials (Basel) ; 9(2)2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28787914

RESUMO

The introduction of N-containing functionalities in carbon-based materials is brought to stable and highly active metal-supported catalysts. However, up to now, the role of the amount and the nature of N-groups have not been completely clear. This study aims to clarify these aspects by preparing tailored N-containing carbons where different N-groups are introduced during the synthesis of the carbon material. These materials were used as the support for Pd nanoparticles. Testing these catalysts in alcohol oxidations and comparing the results with those obtained using Pd nanoparticles supported on different N-containing supports allowed us to obtain insight into the role of the different N-containing groups. In the cinnamyl alcohol oxidation, pyridine-like groups seem to favor both activity and selectivity toward cinnamaldehyde.

16.
ChemSusChem ; 8(24): 4189-94, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26611807

RESUMO

Pt nanoparticles were prepared by a sol immobilization route, deposited on supports with different acid/base properties (MgO, activated carbon, TiO2 , Al2O3, H-Mordenite), and tested in the selective oxidation of sorbose to 2-keto-gulonic acid (2-KGUA), an important precursor for vitamin C. In general, as the basicity of the support increased, a higher catalytic activity occurred. However, in most cases, a strong deactivation was observed. The best selectivity to 2-KGUA was observed with acidic supports (TiO2 and H-Mordenite) that were able to minimize the formation of C1/C2 products. We also demonstrated that, by alloying Pt to Au, it is possible to enhance significantly the selectivity of Pt-based catalysts. Moreover, the AuPt catalyst, unlike monometallic Pt, showed good stability in recycling because of the prevention of metal leaching during the reaction.


Assuntos
Ligas/química , Ouro/química , Platina/química , Sorbose/química , Açúcares Ácidos/química , Titânio/química , Catálise , Oxirredução
17.
ChemSusChem ; 8(15): 2520-8, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26089180

RESUMO

The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1 % Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of S-containing groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 °C and 7 bar H2 ) the catalyst shows high selectivity to γ-valerolactone (GVL; >95 %) and high stability on recycling. However, under more severe conditions (200 °C and p H 2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.


Assuntos
Carbono/química , Lactonas/síntese química , Rutênio/química , Catálise , Hidrogenação , Ácidos Levulínicos/química , Porosidade
18.
Acc Chem Res ; 48(5): 1403-12, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25884231

RESUMO

Glycerol is an important byproduct of biodiesel production, and it is produced in significant amounts by transesterification of triglycerides with methanol. Due to the highly functionalized nature of glycerol, it is an important biochemical that can be utilized as a platform chemical for the production of high-added-value products. At present, research groups in academia and industry are exploring potential direct processes for the synthesis of useful potential chemicals using catalytic processes. Over the last 10 years, there has been huge development of potential catalytic processes using glycerol as the platform chemical. One of the most common processes investigated so far is the catalytic oxidation of glycerol at mild conditions for the formation of valuable oxygenated compounds used in the chemical and pharmaceutical industry. The major challenges associated with the selective oxidation of glycerol are (i) the control of selectivity to the desired products, (ii) high activity and resistance to poisoning, and (iii) minimizing the usage of alkaline conditions. To address these challenges, the most common catalysts used for the oxidation of glycerol are based on supported metal nanoparticles. The first significant breakthrough was the successful utilization of supported gold nanoparticles for improving the selectivity to specific products, and the second was the utilization of supported bimetallic nanoparticles based on gold, palladium, and platinum for improving activity and controlling the selectivity to the desired products. Moreover, the utilization of base-free reaction conditions for the catalytic oxidation of glycerol has unlocked new pathways for the production of free-base products, which facilitates potential industrial application. The advantages of using gold-based catalysts are the improvement of the catalyst lifetime, stability, and reusability, which are key factors for potential commercialization. In this Account, we discuss the advantages of the using supported gold-based nanoparticles, preparation methods for achieving highly active gold-based catalysts, and parameters such as particle size, morphology of the bimetallic particle, and metal-support interactions, which can influence activity and selectivity to the desired products.

19.
Phys Chem Chem Phys ; 17(42): 28171-6, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25812621

RESUMO

AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Au(core)-Ru(shell) has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity, the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core-shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.


Assuntos
Ouro/química , Catálise , Hidrogenação
20.
Acc Chem Res ; 47(3): 855-63, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24266851

RESUMO

Ruby red colloids of gold have been used for thousands of years and in the past have attracted much attention due to their optical properties. Surface plasmon resonance (SPR) bands are responsible for gold colloid colors and typically appear for nanometer-sized gold nanoparticles (GNPs). These lie in the visible range and their position (and intensity) depends on the size, distribution of size, and shape of GNPs but also on their interaction with other materials (i.e., support). Scientists consider colloids as quasi-homogeneous systems, but because of their intrinsic thermodynamic instability, they need different capping agents providing sufficient stability. The strength and the nature of the interaction between the protective (or functionalizing) molecule and the GNP surface is of utmost importance. It can determine the catalytic properties of the nanoparticles, as they mainly interact with the active sites, thus interfering with reactant. Therefore, the protective layer should contribute to the colloid stability, but at the same time, it should not be irreversibly adsorbed on the active site of the GNP surface providing convenient accessibility to reactant. From a catalytic point of view, the milder the interaction is between the particle surface and the capping agent, the more the activity increases. Unfortunately, the reaction conditions often do not allow the required stability of GNPs, which constitutes a fundamental prerequisite for stable catalytic activity. Anchoring GNPs on suitable supports can circumvent the problem, and this technique is now considered a valuable alternative to classical methods to produce highly dispersed gold catalysts. In this Account, we describe the advantages in using this technique to produce gold heterogeneous catalysts of high metal dispersion on a large variety of supports with the possibility of tuning to a large extent the size and (even partially) the shape of GNPs. We also review our recent progress on the sol-immobilization technique. Specifically, we highlight how, depending on its nature, the protective agent not only mediates the activity of GNPs in alcohol oxidation process but also actively participates in the anchoring process and to the stability of GNPs depending on the support surface. We can also use the modification of the metal surface operated by the capping agent to prepare bimetallic species and influence the surface potential, which modifies the intrinsic activity of the GNP. In conclusion, this technique implies many contributions (sometimes not yet clarified factors) that are not simply concerning dimension and dispersion of GNPs or type of support. Chemists should make careful selection of the protective agent and reaction parameters depending on which support is used in which reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA