RESUMO
OBJECTIVES: To assess the feasibility, characteristics and prognostic value of prenatal visualization of the corticospinal tracts (CSTs) using diffusion-weighted magnetic resonance imaging (MRI)-based tractography in fetuses with intraventricular hemorrhage (IVH). METHODS: This was a retrospective single-center cohort study of singleton fetuses diagnosed with IVH on MRI from January 2011 to December 2018. The left and right CSTs were reconstructed according to an in-utero diffusion tensor imaging sequence using a multi-region of interest (ROI) deterministic tractography approach. The CSTs were segmented by two polygonal ROI: at the level of the posterior limb of the internal capsule and the crus cerebri. The morphology and integrity of the CSTs were assessed visually. Internal capsule and crus cerebri apparent diffusion coefficient and fractional anisotropy values were measured. Postnatal motor function data were obtained from the parents using the functional status scale. RESULTS: A total of 35 fetuses with IVH (mean ± SD gestational age, 29.1 ± 5.1 (range, 19.9-38.9) weeks) were included in the analysis. Parenchymal involvement on T2-weighted sequences was demonstrated in 19 (54%) of the cohort. CST involvement correlated significantly with the presence of parenchymal damage on T2-weighted imaging (P = 0.02). Among liveborn cases, the rate of motor impairment was 14% (1/7) in children with intact CSTs compared with 100% (5/5) in cases in which the CSTs were impaired (P = 0.015). CONCLUSIONS: Fetal corticospinal tractography is feasible technically and offers valuable prognostic information. It enhances parental counseling by providing insights into potential motor outcome, underscoring its utility in complementing fetal neurosonography in cases of prenatal IVH. © 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Hemorragia Cerebral Intraventricular , Imagem de Tensor de Difusão , Diagnóstico Pré-Natal , Córtex Sensório-Motor , Imagem de Tensor de Difusão/normas , Córtex Sensório-Motor/diagnóstico por imagem , Diagnóstico Pré-Natal/instrumentação , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas , Hemorragia Cerebral Intraventricular/diagnóstico por imagem , Prognóstico , Humanos , Estudos Retrospectivos , Estudos de Coortes , Doenças Fetais/diagnóstico por imagem , Estudos de ViabilidadeRESUMO
OBJECTIVE: To provide quantitative magnetic resonance imaging (MRI) super-resolution-based three-dimensional volumetric reference data on the growth dynamics of the ganglionic eminence (GE) relative to cortical and total fetal brain volumes (TBV). METHODS: This was a retrospective study of fetuses without structural central nervous system anomalies or other confounding comorbidities that were referred for fetal MRI. Super-resolution reconstructions of 1.5- and 3-Tesla T2-weighted images were generated. Semiautomatic segmentation of TBV and cortical volume and manual segmentation of the GE were performed. Cortical volume, TBV and GE volume were quantified and three-dimensional reconstructions were generated to visualize the developmental dynamics of the GE. RESULTS: Overall, 120 fetuses that underwent 127 MRI scans at a mean gestational age of 27.23 ± 4.81 weeks (range, 20-37 weeks) were included. In the investigated gestational-age range, GE volume ranged from 74.88 to 808.75 mm3 and was at its maximum at 21 gestational weeks, followed by a linear decrease (R2 = 0.559) throughout the late second and third trimesters. A pronounced reduction in GE volume relative to cortical volume and TBV occurred in the late second trimester, with a decline in this reduction observed in the third trimester (R2 = 0.936 and 0.924, respectively). Three-dimensional rendering allowed visualization of a continuous change in the shape and size of the GE throughout the second and third trimesters. CONCLUSIONS: Even small compartments of the fetal brain, which are not easily accessible by standardized two-dimensional modalities, can be assessed precisely by super-resolution processed fetal MRI. The inverse growth dynamics of GE volume compared with TBV and cortical volume reflects the transitory nature and physiological involution of this (patho-)physiologically important brain structure. The normal development and involution of the GE is mandatory for normal cortical development. Pathological changes of this transient organ precede impairment of cortical structures, and their detection may allow an earlier diagnosis of such anomalies. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Gravidez , Feminino , Humanos , Lactente , Estudos Retrospectivos , Encéfalo/anormalidades , Imageamento por Ressonância Magnética/métodos , Feto , Cuidado Pré-Natal , Idade GestacionalRESUMO
OBJECTIVE: To investigate human femur development in fetal growth restriction (FGR) by analyzing femur morphometrics and distal epimetaphyseal features on prenatal magnetic resonance imaging (MRI). METHODS: This was a retrospective study of 111 fetuses (mean gestational age (GA), 27 + 2 weeks (range, 19-35 weeks)) with FGR associated with placental insufficiency without other major abnormalities and 111 GA-matched normal controls. On 1.5-Tesla echoplanar MRI, femur morphometrics, including diaphyseal length, epiphyseal length and epiphyseal width, were assessed. Using a previously reported grading system, epimetaphyseal features, including cartilaginous epiphyseal shape, metaphyseal shape and epiphyseal ossification, were analyzed qualitatively. To compare FGR cases and controls, the paired t-test was used to assess morphometrics, generalized estimating equations were used for epimetaphyseal features and time-to-event analysis was used to assess the visibility of epiphyseal ossification. RESULTS: There were significant differences in femur morphometrics between FGR cases and controls (all parameters, P < 0.001), with bone shortening observed in FGR. No significant differences were found in the distribution of epimetaphyseal features between FGR cases and controls (epiphyseal shape, P = 0.341; metaphyseal shape, P = 0.782; epiphyseal ossification, P = 0.85). Epiphyseal ossification was visible at a median of 33.6 weeks in FGR cases and at 32.1 weeks in controls (P = 0.008). CONCLUSIONS: On prenatal MRI, cases with FGR associated with placental insufficiency exhibit diaphyseal and epiphyseal shortening of the femur. However, FGR cases and normal controls share similarly graded distal epimetaphyseal features. Consequently, these features may not be appropriate MRI characteristics for the identification of FGR. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Retardo do Crescimento Fetal , Insuficiência Placentária , Gravidez , Feminino , Humanos , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/patologia , Insuficiência Placentária/diagnóstico por imagem , Placenta/diagnóstico por imagem , Estudos Retrospectivos , Fêmur/diagnóstico por imagem , Idade Gestacional , Imageamento por Ressonância Magnética/métodos , Ultrassonografia Pré-NatalRESUMO
BACKGROUND AND PURPOSE: Multidynamic multiecho sequence-based imaging enables investigators to reconstruct multiple MR imaging contrasts on the basis of a single scan. This study investigated the feasibility of synthetic MRI-based WM signal suppression (syWMSS), a synthetic inversion recovery approach in which a short TI suppresses myelin-related signals, for the identification of early myelinating brainstem pathways. MATERIALS AND METHODS: Thirty-one cases of neonatal MR imaging, which included multidynamic multiecho data and conventionally acquired T1- and T2-weighted sequences, were analyzed. The multidynamic multiecho postprocessing software SyMRI was used to generate syWMSS data (TR/TE/TI = 3000/5/410 ms). Two raters discriminated early myelinating brainstem pathways (decussation of the superior cerebellar peduncle, medial lemniscus, central tegmental tract, and medial longitudinal fascicle [the latter 3 assessed at the level of the pons]) on syWMSS data and reference standard contrasts. RESULTS: On the basis of syWMSS data, the decussation of the superior cerebellar peduncle (31/31); left/right medial lemniscus (31/31; 30/31); left/right central tegmental tract (19/31; 20/31); and left/right medial longitudinal fascicle (30/31) were reliably identified by both raters. On the basis of T1-weighted contrasts, the decussation of the superior cerebellar peduncle (14/31); left/right medial lemniscus (22/31; 16/31); left/right central tegmental tract (1/31); and left/right medial longitudinal fascicle (9/31; 8/31) were reliably identified by both raters. On the basis of T2-weighted contrasts, the decussation of the superior cerebellar peduncle (28/31); left/right medial lemniscus (16/31; 12/31); left/right central tegmental tract (23/31; 18/31); and left/right medial longitudinal fascicle (15/31; 14/31) were reliably identified by both raters. CONCLUSIONS: syWMSS data provide a feasible imaging technique with which to study early myelinating brainstem pathways. MR imaging approaches that use myelin signal suppression contribute to a more sensitive assessment of myelination patterns at early stages of cerebral development.
Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Recém-Nascido , Humanos , Imageamento por Ressonância Magnética/métodos , Tronco Encefálico/diagnóstico por imagem , Ponte , Bainha de MielinaRESUMO
BACKGROUND AND PURPOSE: Former preterm born males are at higher risk for neurodevelopmental disabilities compared with female infants born at the same gestational age. This retrospective study investigated sex-related differences in the maturity of early myelinating brain regions in infants born <28 weeks' gestational age using diffusion tensor- and relaxometry-based MR imaging. MATERIALS AND METHODS: Quantitative MR imaging sequence acquisitions were analyzed in a sample of 35 extremely preterm neonates imaged at term-equivalent ages. Quantitative MR imaging metrics (fractional anisotropy; ADC [10-3mm2/s]; and T1-/T2-relaxation times [ms]) of the medulla oblongata, pontine tegmentum, midbrain, and the right/left posterior limbs of the internal capsule were determined on diffusion tensor- and multidynamic, multiecho sequence-based imaging data. ANCOVA and a paired t test were used to compare female and male infants and to detect hemispheric developmental asymmetries. RESULTS: Seventeen female (mean gestational age at birth: 26 + 0 [SD, 1 + 4] weeks+days) and 18 male (mean gestational age at birth: 26 + 1 [SD, 1 + 3] weeks+days) infants were enrolled in this study. Significant differences were observed in the T2-relaxation time (P = .014) of the pontine tegmentum, T1-relaxation time (P = .011)/T2-relaxation time (P = .024) of the midbrain, and T1-relaxation time (P = .032) of the left posterior limb of the internal capsule. In both sexes, fractional anisotropy (P [â] < .001/P [â] < .001) and ADC (P [â] = .017/P [â] = .028) differed significantly between the right and left posterior limbs of the internal capsule. CONCLUSIONS: The combined use of various quantitative MR imaging metrics detects sex-related and interhemispheric differences of WM maturity. The brainstem and the left posterior limb of the internal capsule of male preterm neonates are more immature compared with those of female infants at term-equivalent ages. Sex differences in WM maturation need further attention for the personalization of neonatal brain imaging.
Assuntos
Lactente Extremamente Prematuro , Imageamento por Ressonância Magnética , Anisotropia , Encéfalo/diagnóstico por imagem , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos RetrospectivosRESUMO
BACKGROUND AND PURPOSE: On the basis of a single multidynamic multiecho sequence acquisition, SyMRI generates a variety of quantitative image data that can characterize tissue-specific properties. The aim of this retrospective study was to evaluate the feasibility of SyMRI for the qualitative and quantitative assessment of fetal brain maturation. MATERIALS AND METHODS: In 52 fetuses, multidynamic multiecho sequence acquisitions were available. SyMRI was used to perform multidynamic multiecho-based postprocessing. Fetal brain maturity was scored qualitatively on the basis of SyMRI-generated MR imaging data. The results were compared with conventionally acquired T1-weighted/T2-weighted contrasts as a standard of reference. Myelin-related changes in T1-/T2-relaxation time/relaxation rate, proton density, and MR imaging signal intensity of the developing fetal brain stem were measured. A Pearson correlation analysis was used to detect correlations between the following: 1) the gestational age at MR imaging and the fetal brain maturity score, and 2) the gestational age at MR imaging and the quantitative measurements. RESULTS: SyMRI provided images of sufficient quality in 12/52 (23.08%) (range, 23 + 6-34 + 0) fetal multidynamic multiecho sequence acquisitions. The fetal brain maturity score positively correlated with gestational age at MR imaging (SyMRI: r = 0.915, P < .001/standard of reference: r = 0.966, P < .001). Myelination-related changes in the T2 relaxation time/T2 relaxation rate of the medulla oblongata significantly correlated with gestational age at MR imaging (T2-relaxation time: r = -0.739, P = .006/T2-relaxation rate: r = 0.790, P = .002). CONCLUSIONS: Fetal motion limits the applicability of multidynamic multiecho-based postprocessing. However, SyMRI-generated image data of sufficient quality enable the qualitative assessment of maturity-related changes of the fetal brain. In addition, quantitative T2 relaxation time/T2 relaxation rate mapping characterizes myelin-related changes of the brain stem prenatally. This approach, if successful, opens novel possibilities for the evaluation of structural and biochemical aspects of fetal brain maturation.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Meios de Contraste , Humanos , Estudos RetrospectivosRESUMO
OBJECTIVE: Heterotaxy or isomerism of the atrial appendages is a congenital disorder with variable presentation, associated with both cardiac and non-cardiac anomalies, which may have a serious impact on fetal outcome. The aim of this exploratory study was to assess the value of fetal magnetic resonance imaging (MRI), as a complementary tool to ultrasound, for describing the morphological spectrum encountered in heterotaxy. METHODS: This retrospective study included 27 fetuses that underwent fetal MRI following prenatal suspicion of heterotaxy on ultrasound from 1998 to 2019 in a tertiary referral center. Heterotaxy was classified as left atrial isomerism (LAI) or right atrial isomerism (RAI) based on fetal echocardiography (FE) examination. In addition to routine prenatal ultrasound, fetal MRI was offered routinely to enhance the diagnosis of non-cardiac anomalies, which might have been missed on ultrasound. Prenatal findings on ultrasound, FE and MRI were reviewed systematically and compared with those of postnatal imaging and autopsy reports. RESULTS: Twenty-seven fetuses with heterotaxy and cardiovascular pathology, of which 19 (70%) had LAI and eight (30%) had RAI, were included. Seven (7/19 (37%)) fetuses with LAI had normal intracardiac anatomy, whereas all fetuses with RAI had a cardiac malformation. All 27 fetuses had non-cardiac anomalies on fetal MRI, including situs and splenic anomalies. In 12/19 (63%) fetuses with LAI, a specific abnormal configuration of the liver was observed on MRI. In three fetuses, fetal MRI revealed signs of total anomalous pulmonary venous connection obstruction. An abnormal bronchial tree pattern was suspected on prenatal MRI in 6/19 (32%) fetuses with LAI and 3/8 (38%) fetuses with RAI. CONCLUSIONS: Visualization on MRI of non-cardiac anomalies in fetuses with suspected heterotaxy is feasible and can assist the complex diagnosis of this condition, despite its limitations. This modality potentially enables differentiation of less severe cases from more complex ones, which may have a poorer prognosis. Fetal MRI can assist in prenatal counseling and planning postnatal management. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Feto/diagnóstico por imagem , Síndrome de Heterotaxia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Multimodal/métodos , Diagnóstico Pré-Natal/métodos , Adulto , Ecocardiografia/métodos , Estudos de Viabilidade , Feminino , Feto/anormalidades , Síndrome de Heterotaxia/embriologia , Humanos , Fenótipo , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal/métodosRESUMO
BACKGROUND AND PURPOSE: Although "corpus callosum agenesis" is an umbrella term for multiple entities, prenatal counseling is based reductively on the presence (associated) or absence (isolated) of additional abnormalities. Our aim was to test the applicability of a fetal MR neuroimaging score in a cohort of fetuses with prenatally diagnosed isolated corpus callosum agenesis and associated corpus callosum agenesis and correlate it with neurodevelopmental outcomes. MATERIALS AND METHODS: We performed a single-center retrospective analysis of a cohort of cases of consecutive corpus callosum agenesis collected between January 2011 and July 2019. Cases were scored by 2 raters, and interater agreement was calculated. Outcome was assessed by standardized testing (Bayley Scales of Infant and Toddler Development, Kaufman Assessment Battery for Children) or a structured telephone interview and correlated with scores using 2-way ANOVA. RESULTS: We included 137 cases (74 cases of isolated corpus callosum agenesis), imaged at a mean of 27 gestational weeks. Interrater agreement was excellent (0.98). Scores were higher in associated corpus callosum agenesis (P < .0001) without a significant score difference between complete and partial corpus callosum agenesis (P = .38). Outcome was assessed in 42 children with isolated corpus callosum agenesis and 9 with associated corpus callosum agenesis (mean age, 3.1 years). MR imaging scores correctly predicted developmental outcome in 90.7% of patients with isolated corpus callosum agenesis, improving neurodevelopmental risk stratification in corpus callosum agenesis. CONCLUSIONS: The scoring system is very reproducible and can differentiate isolated corpus callosum agenesis and associated isolated corpus callosum agenesis (significantly higher scores) but not between partial and complete corpus callosum agenesis. Scores correlated with outcome in isolated corpus callosum agenesis, but there were too few associated postnatal cases of isolated corpus callosum agenesis to draw conclusions in this group.
Assuntos
Agenesia do Corpo Caloso , Agenesia do Corpo Caloso/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Feminino , Feto , Humanos , Imageamento por Ressonância Magnética , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-NatalRESUMO
BACKGROUND AND PURPOSE: Preterm birth interferes with regular brain development. The aim of this study was to investigate the impact of prematurity on the physical tissue properties of the neonatal brain stem using a quantitative MR imaging approach. MATERIALS AND METHODS: A total of 55 neonates (extremely preterm [n = 30]: <28 + 0 weeks gestational age; preterm [n = 10]: 28 + 0-36 + 6 weeks gestational age; term [n = 15]: ≥37 + 0 weeks gestational age) were included in this retrospective study. In most cases, imaging was performed at approximately term-equivalent age using a standard MR protocol. MR data postprocessing software SyMRI was used to perform multidynamic multiecho sequence (acquisition time: 5 minutes, 24 seconds)-based MR postprocessing to determine T1 relaxation time, T2 relaxation time, and proton density. Mixed-model ANCOVA (covariate: gestational age at MR imaging) and the post hoc Bonferroni test were used to compare the groups. RESULTS: There were significant differences between premature and term infants for T1 relaxation time (midbrain: P < .001; pons: P < .001; basis pontis: P = .005; tegmentum pontis: P < .001; medulla oblongata: P < .001), T2 relaxation time (midbrain: P < .001; tegmentum pontis: P < .001), and proton density (tegmentum pontis: P = .004). The post hoc Bonferroni test revealed that T1 relaxation time/T2 relaxation time in the midbrain differed significantly between extremely preterm and preterm (T1 relaxation time: P < .001/T2 relaxation time: P = .02), extremely preterm and term (T1 relaxation time/T2 relaxation time: P < .001), and preterm and term infants (T1 relaxation time: P < .001/T2 relaxation time: P = .006). CONCLUSIONS: Quantitative MR parameters allow preterm and term neonates to be differentiated. T1 and T2 relaxation time metrics of the midbrain allow differentiation between the different stages of prematurity. SyMRI allows for a quantitative assessment of incomplete brain maturation by providing tissue-specific properties while not exceeding a clinically acceptable imaging time.
Assuntos
Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/crescimento & desenvolvimento , Recém-Nascido Prematuro , Feminino , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Masculino , Gravidez , Estudos RetrospectivosRESUMO
OBJECTIVES: To characterize spatiotemporal growth differences of prenatal brainstem substructures and cerebellum, using linear biometry and planimetry on fetal magnetic resonance imaging (MRI). METHODS: In this retrospective study, we included fetuses with normal brain and a precise midsagittal T2-weighted brain MRI sequence obtained between May 2003 and April 2019. The cross-sectional area, rostrocaudal diameter and anteroposterior diameter of the midbrain, pons (basis pontis and pontine tegmentum), medulla oblongata and cerebellar vermis, as well as the transverse cerebellar diameter, were quantified by a single observer. The diameters were also assessed by a second observer to test inter-rater variability. RESULTS: We included 161 fetuses with normal brain and a precise midsagittal MRI sequence, examined at a mean ± SD gestational age of 25.7 ± 5.4 (range, 14 + 0 to 39 + 2) weeks. All substructures of the fetal brainstem and the cerebellum could be measured consistently (mean ± SD interobserver intraclass correlation coefficient, 0.933 ± 0.065). We provide reference data for diameters and areas of the brainstem and cerebellum in the second and third trimesters. There was a significant quadratic relationship between vermian area and gestational age, and all other measured parameters showed a significant linear growth pattern within the observed period (P < 0.001). A significant change in the relative proportions of the brainstem substructures occurred between the beginning of the second trimester and the end of the third trimester, with an increase in the area of the pons (P < 0.001) and a decrease in that of the midbrain (P < 0.001), relative to the total brainstem area. CONCLUSIONS: The substructures of the fetal brainstem follow a distinct spatiotemporal growth pattern, characterized by a relative increase in the pons and decrease in the midbrain, between 15 and 40 weeks of gestation. Caution is needed when interpreting fetal brainstem appearance during the early second trimester, as the brainstem proportions differ significantly from the adult morphology. The reference data provided herein should help to increase diagnostic accuracy in detecting disorders of defective hindbrain segmentation. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Tronco Encefálico/diagnóstico por imagem , Feto/diagnóstico por imagem , Diagnóstico Pré-Natal , Tronco Encefálico/crescimento & desenvolvimento , Feminino , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética , Gravidez , Valores de Referência , Estudos RetrospectivosRESUMO
OBJECTIVES: Corpus callosal agenesis (CCA) is one of the most common brain malformations and is generally associated with a good outcome when isolated. However, up to 25% of patients are at risk of neurodevelopmental delay, which currently available clinical and imaging parameters are inadequate to predict. The objectives of this study were to apply and validate a fetal magnetic resonance imaging (MRI) anatomical scoring system in a cohort of fetuses with isolated CCA and to evaluate the correlation with postnatal neurodevelopmental outcome. METHODS: This was a retrospective cohort study of cases of prenatally diagnosed isolated CCA (as determined on ultrasound and MRI), with normal karyotype and with known postnatal neurodevelopmental outcome assessed by standardized testing. A fetal brain MRI anatomical scoring system based on seven categories (gyration, opercularization, temporal lobe symmetry, lamination, hippocampal position, basal ganglia and ventricular size) was developed and applied to the cohort; a total score of 0-11 points could be given, with a score of 0 representing normal anatomy. Images were scored independently by two neuroradiologists blinded to the outcome. For the purpose of assessing the correlation between fetal MRI score and neurodevelopmental outcome, neurodevelopmental test results were scored as follows: 0, 'below average' (poor outcome); 1, 'average'; and 2, 'above average' (good outcome). Spearman's rank coefficient was used to assess correlation, and inter-rater agreement in the assessment of fetal MRI score was calculated. RESULTS: Twenty-one children (nine females (42.9%)) fulfilled the inclusion criteria. Thirty-seven fetal MRI examinations were evaluated. Mean gestational age was 28.3 ± 4.7 weeks (range, 20-38 weeks). All fetuses were delivered after 35 weeks' gestation with no perinatal complications. Fetal MRI scores ranged from 0 to 6 points, with a median of 3 points. Inter-rater agreement in fetal MRI score assessment was excellent (intraclass correlation coefficient, 0.959 (95% CI, 0.921-0.979)). Neurodevelopmental evaluation was performed on average at 2.6 ± 1.46 years (range, 0.5-5.8 years). There was a significant negative correlation between fetal MRI score and neurodevelopmental outcome score in the three areas tested: cognitive (ρ = -0.559, P < 0.0001); motor (ρ = -0.414, P = 0.012) and language (ρ = -0.565, P < 0.0001) skills. Using fetal MRI score cut-offs of ≤ 3 (good outcome) and ≥ 4 points (high risk for poor outcome), the correct prognosis could be determined in 20/21 (95.2% (95% CI, 77.3-99.2%)) cases. CONCLUSION: By assessing structural features of the fetal brain on MRI, it may be possible to better stratify prenatally the risk of poor neurodevelopmental outcome in CCA patients. © 2020 Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Agenesia do Corpo Caloso/diagnóstico por imagem , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/estatística & dados numéricos , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Agenesia do Corpo Caloso/complicações , Agenesia do Corpo Caloso/embriologia , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/embriologia , Corpo Caloso/fisiopatologia , Feminino , Feto/embriologia , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos do Neurodesenvolvimento/etiologia , Valor Preditivo dos Testes , Gravidez , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Estatísticas não Paramétricas , Ultrassonografia Pré-NatalRESUMO
OBJECTIVES: Fetal magnetic resonance imaging (MRI) plays an increasingly important role in the prenatal diagnosis of gastrointestinal abnormalities. During gestation, the bowel develops T1-weighted hyperintensity due to meconium formation. Currently used T1-weighted sequences are performed in maternal breath-hold (BH) technique, which may take up to 20â¯s. The free-breathing (FB) T1-weighted 3D radial VIBE (volumetric interpolated breath-hold examination) sequence requires no breath-hold, improving patient comfort. This study aimed to address how well the FB acquisition technique can visualize large bowel structures compared to the routinely performed breath-hold sequence. METHODS: Forty-seven fetal MRI studies between 21 and 36 weeks of gestation without abdominal pathologies on prenatal MRI and ultrasound were included. All fetal scans were performed using a Philips Ingenia 1.5â¯T MRI. Coronal T1-weighted BH and FB sequences without fat suppression were compared. The following acquisition parameters were used (T1, FB): resolution 1.137â¯mm, 1.004â¯mm; matrix size 288â¯×â¯288, 448â¯×â¯448; FOV 328â¯mm, 450â¯mm; TR 81-132â¯ms, 3.47â¯ms; TE 4.6â¯ms, 1.47â¯ms. Due to the necessity of the breath-hold the duration of the sequence could not exceed 20â¯s (mean duration of the T1-weighted BH sequence 15.17â¯s, and mean duration of the FB sequence 26.42â¯s). In all examined fetuses the following structures were evaluated with respect to their visibility (0-not visible, 1-partially visible, 2-clearly visible): rectum, sigmoid, descending, transverse and ascending colon, cecum. Furthermore, motion artifacts were assessed (0-none, 1-intermediate, 2-severe motion artifacts), and the signal intensity (SI) ratio between maternal fat and fetal rectum SI was calculated. RESULTS: No significant differences in the visibility of sigmoid and colon between BH and FB were detected, only the cecum could be seen slightly better (in 29.8 % of cases) using BH technique. Motion artifacts were similar between BH and FB. There was a non-significant SI difference (pâ¯=â¯0.68) in the rectum, with a higher SI in the BH sequence. CONCLUSIONS: The FB acquisition technique compared to T1 using BH is equal regarding visibility of bowel structures and artifacts. Due to non-inferiority to the BH technique, the FB sequence is a good alternative in cases where BH cannot be performed. As the FB sequence further allows for thinner slices with a good signal, even small bowel loops may be visualized.