Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Mol Cell Neurosci ; 131: 103969, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260456

RESUMO

SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.

2.
Biomed Pharmacother ; 178: 117120, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024836

RESUMO

Linalool-rich Rosewood oil (Aniba rosaeodora Ducke) is a natural compound widely used in perfumery industry. Evidence suggests that linalool exerts antidepressant and anxiolytic effects. Conversely, ethanol binge drinking (i.e., intermittent and episodic consumption) during adolescence elicits neurobehavioral alterations associated with brain damage. Here, we investigated whether linalool-rich Rosewood oil administration can improve the emotional and molecular impairments associated with ethanol binge-like exposure during adolescence in female rats. Rosewood oil was obtained by hydrodistillation and posteriorly analyzed. Adolescent female Wistar rats received four-cycles of ethanol binge-like pattern (3 g/kg/day, 3 days on/4 days off) and daily Rosewood oil (35 mg/kg, intranasally) for 28 days. Twenty-four hours after treatments, it was evaluated the impact of ethanol exposure and Rosewood oil treatment on the putative emotional impairments assessed on the splash and forced swimming tests, as well as the levels of brain-derived neurotrophic factor (BDNF), S100B, oxidative parameters, and inflammatory cytokines in prefrontal cortex and hippocampus. Results indicated that Rosewood oil intranasal administration mitigated emotional impairments induced by ethanol exposure accompanied by a marked increase in BDNF, S100B, glutathione (GSH), and antioxidant activity equivalent to Trolox (TEAC) levels in brain areas. Rosewood oil treatment also prevented the ethanol-induced increase of interleukin-1ß, interleukin-6, tumor necrosis factor α (TNF-α), and neurofilament light chain (NFL) levels. These findings provide the first evidence that Rosewood oil intranasal administration exerts protective effects against emotional and molecular impairments associated with adolescent ethanol binge-like exposure, possibly due to linalool actions triggering neurotrophic factors, rebalancing antioxidant status, and attenuating proinflammatory process.


Assuntos
Monoterpenos Acíclicos , Etanol , Óleos Voláteis , Ratos Wistar , Animais , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/isolamento & purificação , Monoterpenos Acíclicos/farmacologia , Ratos , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Emoções/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Citocinas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
3.
CNS Neurol Disord Drug Targets ; 23(11): 1371-1391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500273

RESUMO

INTRODUCTION: Multiple illnesses commonly involve both the Central Nervous System (CNS) and the Gastrointestinal Tract (GI) simultaneously. Consistent evidence suggests that neurological disorders impair GI tract function and worsen the symptomatology and pathophysiology of digestive disorders. On the other hand, it has been proposed that early functional changes in the GI tract contribute to the genesis of several CNS illnesses. Additionally, the role played by the gut in these diseases can be seen as a paradigm for how the gut and the brain interact. METHODS: We mentioned significant GI symptoms and discussed how the GI tract affects central nervous system illnesses, including depression, anxiety, Alzheimer's disease, and Parkinson's disease in this study. We also explored potential pathophysiological underpinnings and novel targets for the creation of future therapies targeted at gut-brain connections. RESULTS & DISCUSSION: In this situation, modulating the gut microbiota through the administration of fecal microbiota transplants or probiotics may represent a new therapeutic option for this population, not only to treat GI problems but also behavioral problems, given the role that dysbiosis and leaky gut play in many neurological disorders. CONCLUSION: Accurate diagnosis and treatment of co-existing illnesses also require coordination between psychiatrists, neurologists, gastroenterologists, and other specialties, as well as a thorough history and thorough physical examination.


Assuntos
Ansiedade , Depressão , Gastroenteropatias , Doenças Neurodegenerativas , Humanos , Depressão/terapia , Gastroenteropatias/terapia , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Trato Gastrointestinal
4.
Brain Sci ; 14(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275520

RESUMO

Parkinson's disease (PD) is a multifactorial disease, with genetic and environmental factors contributing to the disease onset. Classically, PD is a movement disorder characterized by the loss of dopaminergic neurons in the nigrostriatal pathway and intraneuronal aggregates mainly constituted of the protein α-synuclein. However, PD patients also display non-motor symptoms, including depression, which have been linked to functional abnormalities of non-dopaminergic neurons, including serotonergic and noradrenergic ones. Thus, through this comprehensive literature review, we shed light on the noradrenergic and serotonergic impairment linked to depression in PD, focusing on the putative involvement of inflammatory mechanisms.

5.
ACS Chem Neurosci ; 14(16): 2857-2867, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37499207

RESUMO

Oxidative glutamate toxicity is regarded as one of the injurious mechanisms associated with ischemic stroke, which represents a major health problem and requires improved pharmacological treatments. We designed and synthesized two new probucol analogues [2,6-di-tert-butyl-4-selenocyanatophenol (C1) and 4,4'-diselanediylbis (2,6-di-tert-butylphenol) (C2)] and investigated their effects against glutamate-induced neuronal oxidative toxicity in vitro in cultured HT22 cells, compared with their parental compound (probucol). In addition, C2, which exhibited the lowest toxicity, was investigated in an in vivo rodent model of ischemic stroke. Glutamate caused concentration- and time-dependent cytotoxicity in HT22 neuronal cells, which was preceded by increased levels of oxidants and depletion of the antioxidant glutathione. The analogues (C1 and C2), but not probucol, significantly decreased the levels of oxidants (including mitochondrial superoxide anion and lipid reactive oxygen species (ROS)) and protected against glutamate-induced cytotoxicity. In the in vivo model of ischemic stroke, which was based on central injections of the vasoconstrictor agent endothelin-1 (800 pmol/site), C2 (20 or 50 mg/kg/day, intraperitoneally, for 4 consecutive days after stroke) displayed significant beneficial effects against ischemic injury in vivo, improving rats' motor-related behavioral skills and decreasing stroke-related striatal gliosis. This is the first study to design, synthesize, and present a probucol analogue (C2) with in vivo beneficial effects against ischemic stroke. This novel compound, which was able to mitigate glutamate-induced oxidative toxicity in vitro, represents a promising neuroprotective drug.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Ratos , Animais , Probucol/farmacologia , Neuroproteção , Ácido Glutâmico/toxicidade , Roedores , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Oxidantes/farmacologia
7.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36718558

RESUMO

Phenolic compounds (PCs) have neuroprotective effects with potential to prevent or slower the progression of Parkinson's disease (PD). However, whether the PCs neuroprotective effects can be observed under their dietary concentrations remains unclear. Therefore, we searched for the most cited articles in density on PCs and PD in the Web of Science Core Collection and All-Database (WoS-CC/AD) and selected the articles based on our eligibility criteria. From these 81 articles selected, we extracted information on experimental design, compounds tested, concentration and/or dose administered, route of administration, and main results obtained. We compared the concentrations of PCs evaluated in vitro with the concentrations bioavailable in the human bloodstream. Further, after extrapolation to humans, we compared the doses administered to animals in vivo with the daily consumed amounts of PCs. Concentrations evaluated in 21 in vitro laboratory studies were higher than those bioavailable in the bloodstream. In the case of in vivo laboratory studies, only one study administered doses of PCs in normal daily amount. The results of the comparisons demonstrate that the neuroprotective effects of the selected articles are mainly associated with concentrations, amounts and routes of administration that do not correspond to the consumption of phenolic compounds through the diet.

8.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355494

RESUMO

Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure's hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.

9.
Neurotox Res ; 40(6): 1924-1936, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441450

RESUMO

Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols. In PND8, ex vivo analysis of hippocampal and frontal cortex slices evaluated cell viability and susceptibility to in vitro glutamate challenge. In adult rats, behavioral parameters related to anxiety-like behavior, short-term memory, and locomotor activity (PND60-62) and ex vivo analysis of cell viability, membrane permeability, glutamate uptake, and susceptibility to in vitro glutamate challenge in hippocampal and cortical slices from PND65. A single isoflurane (3%, 2 h) exposure at PND7 did not acutely alter cell viability in cortical and hippocampal slices of infant rats (PND8) per se and did not alter slice susceptibility to in vitro glutamate challenge. In rat's adulthood, behavioral analysis revealed that the neonatal isoflurane exposure did not alter anxiety-like behavior and locomotor activity (open field and rotarod tests). However, isoflurane exposure impaired short-term memory evaluated in the novel object recognition task. Ex vivo analysis of brain slices showed isoflurane neonatal exposure selectively decreased cell viability and glutamate uptake in cortical slices, but it did not alter hippocampal slice viability or glutamate uptake (PND65). Isoflurane exposure did not alter in vitro glutamate-induced neurotoxicity to slices, and isoflurane exposure caused no significant long-term damage to cell membranes in hippocampal or cortical slices. These findings indicate that a single neonatal isoflurane exposure did not promote acute damage; however, it reduced cortical, but not hippocampal, slice viability and glutamate uptake in the adulthood. Additionally, behavioral analysis showed neonatal isoflurane exposure induces short-term recognition memory impairment, consolidating that neonatal exposure to volatile anesthetics may lead to behavioral impairment in the adulthood, although it may damage brain regions differentially.


Assuntos
Anestésicos Inalatórios , Anestésicos , Isoflurano , Ratos , Animais , Isoflurano/toxicidade , Ácido Glutâmico/metabolismo , Memória de Curto Prazo , Sobrevivência Celular , Hipocampo , Lobo Frontal/metabolismo , Córtex Cerebral/metabolismo , Anestésicos Inalatórios/toxicidade
10.
Behav Neurosci ; 136(2): 139-148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34914421

RESUMO

Attention Deficit Hyperactivity Disorder (ADHD) is a highly prevalent and disabling disorder that frequently persists into adulthood. Many patients are considered nonresponders to typical pharmacological treatments due to insufficient symptoms' reduction or the inability to tolerate the side effects of these medications. Agmatine is an endogenous neuromodulator with emotional- and cognitive-enhancing properties that arises as a promising agent to manage several Central Nervous System disorders. Here, we investigated the effects of chronic treatment with agmatine on behavioral impairments exhibited by adult Spontaneously Hypertensive Rats (SHR), an animal model for the study of ADHD. Adult male Wistar and SHR (3-4 months old) received intraperitoneal (i.p.) treatment with saline (NaCl 0.9%) or agmatine (30 mg/kg/day) during 20 consecutive days and were evaluated in a battery of behavioral tasks. Agmatine treatment improved olfactory and recognition memory impairments of SHR evaluated in the olfactory discrimination, object recognition, and social recognition memory tasks. In addition, agmatine administration improved the cognitive flexibility in the water maze test. Agmatine did not alter SHR's locomotor activity and hedonic-like behaviors observed in the open-field and splash tests, respectively. No changes were observed in SHR's systolic blood pressure following agmatine treatment. This study provides the first evidence that agmatine improves olfactory and cognitive impairments observed in an animal model of ADHD. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Agmatina , Transtorno do Deficit de Atenção com Hiperatividade , Disfunção Cognitiva , Adulto , Agmatina/farmacologia , Agmatina/uso terapêutico , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Cognição , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
11.
Front Immunol ; 12: 759679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868000

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1-2% of the population aged 65 and over. Additionally, non-motor symptoms such as pain and gastrointestinal dysregulation are also common in PD. These impairments might stem from a dysregulation within the gut-brain axis that alters immunity and the inflammatory state and subsequently drives neurodegeneration. There is increasing evidence linking gut dysbiosis to the severity of PD's motor symptoms as well as to somatosensory hypersensitivities. Altogether, these interdependent features highlight the urgency of reviewing the links between the onset of PD's non-motor symptoms and gut immunity and whether such interplays drive the progression of PD. This review will shed light on maladaptive neuro-immune crosstalk in the context of gut dysbiosis and will posit that such deleterious interplays lead to PD-induced pain hypersensitivity.


Assuntos
Disbiose/imunologia , Dor/imunologia , Doença de Parkinson/imunologia , Humanos
12.
Neurochem Int ; 151: 105215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710535

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.


Assuntos
Encéfalo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Fatores Sexuais , Receptor 4 Toll-Like/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Hidroxidopaminas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/genética
13.
Brain Commun ; 3(3): fcab116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423297

RESUMO

Fatigue is a common symptom of Parkinson's disease that compromises significantly the patients' quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson's disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8-10 weeks; 35-45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson's disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson's disease.

14.
Mol Psychiatry ; 26(12): 7257-7269, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34316004

RESUMO

We demonstrate that the rate of extracellular signal-related kinase phosphorylation (P-ERK1,2/Total-ERK1,2) in the amygdala is negatively and independently associated with anxiety symptoms in 23 consecutive patients with drug-resistant mesial temporal lobe epilepsy that was surgically treated. In naive Wistar rats, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala correlates negatively with innate anxiety-related behavior on the elevated plus maze (n = 20) but positively with expression of defensive-learned behavior (i.e., freezing) on Pavlovian aversive (fear) conditioning (n = 29). The microinfusion of ERK1/2 inhibitor (FR180204, n = 8-13/group) or MEK inhibitor (U0126, n = 8-9/group) into the basolateral amygdala did not affect anxiety-related behavior but impaired the evocation (anticipation) of conditioned-defensive behavior (n = 9-11/group). In conclusion, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala predicts anxiety in humans and the innate anxiety- and conditioned freezing behaviors in rats. However, the ERK1/2 in the basolateral AMY is only required for the expression of defensive-learned behavior. These results support a dissociate ERK-dependent mechanism in the amygdala between innate anxiety-like responses and the anticipation of learned-defensive behavior. These findings have implications for understanding highly prevalent psychiatric disorders related to the defensive circuit manifested by anxiety and fear. HIGHLIGHTS: The P-ERK1,2/Total-ERK1,2 ratio in the amygdala (AMY) correlates negatively with anxiety symptoms in patients with mesial temporal lobe epilepsy. The P-ERK1,2/Total-ERK1,2 in the amygdala correlates negatively with the anxiety-like behavior and positively with freezing-learned behavior in naive rats. ERK1,2 in the basolateral amygdala is required for learned-defensive but not for the anxiety-like behavior expression in rats.


Assuntos
Tonsila do Cerebelo , Ansiedade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Ratos , Ratos Wistar
15.
J Pain ; 22(8): 996-1013, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774154

RESUMO

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1ß and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Hiperalgesia , Neoplasias/tratamento farmacológico , Doenças Neuroinflamatórias , Oxaliplatina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico , Medula Espinal , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Receptor 4 Toll-Like
16.
Behav Brain Res ; 398: 112969, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075395

RESUMO

Obesity represents a risk factor for metabolic syndrome and cardiovascular and psychiatric disorders. Excessive caloric intake, particularly in dietary fats, is an environmental factor that contributes to obesity development. Thus, the observation that switching from long-standing dietary obesity to standard diet (SD) can ameliorate the high-fat diet-induced metabolic, memory, and emotionality-related impairments are particularly important. Herein we investigated whether switching from the high-fat diet (HFD) to SD could improve the metabolic and behavioral impairments observed in middle-aged females C57Bl/6 mice. During twelve weeks, the animals received a high-fat diet (61 % fat) or SD diet. After 12-weeks, the HFD group's diet was switched to SD for an additional four weeks. It was observed a progressive deleterious effect of HFD in metabolic and behavioral parameters in mice. After four weeks of HFD-feeding, the animals showed glucose intolerance and increased locomotor activity. A subsequent increase in the body mass gain, hyperglycemia, and depressive-like behavior was observed after eight weeks, and memory impairments after twelve weeks. After replacing the HFD to SD, it was observed an improvement of metabolic (loss of body mass, normal plasma glucose levels, and glucose tolerance) and behavioral (absence of memory and emotional alterations) parameters. These results demonstrate the temporal development of metabolic and behavioral impairments following HFD in middle-age female mice and provide new evidence that these alterations can be improved by switching back the diet to SD.


Assuntos
Disfunção Cognitiva/etiologia , Depressão/etiologia , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/etiologia , Locomoção/fisiologia , Motivação/fisiologia , Obesidade/etiologia , Memória Espacial/fisiologia , Fatores Etários , Animais , Comportamento Animal/fisiologia , Disfunção Cognitiva/dietoterapia , Depressão/dietoterapia , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/dietoterapia , Intolerância à Glucose/etiologia , Hiperglicemia/sangue , Hiperglicemia/dietoterapia , Camundongos , Camundongos Endogâmicos C57BL
17.
Nutr Neurosci ; 24(12): 978-988, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31910791

RESUMO

Although the benefits of moderate intake of red wine in decreasing incidence of cardiovascular diseases associated to hypercholesterolemia are well recognized, there are still widespread misconceptions about its effects on the hypercholesterolemia-related cognitive impairments. Herein we investigated the putative benefits of regular red wine consumption on cognitive performance of low-density lipoprotein receptor knockout (LDLr-/-) mice, an animal model of familial hypercholesterolemia, which display cognitive impairments since early ages. The red wine was diluted into the drinking water to a final concentration of 6% ethanol and was available for 60 days for LDLr-/- mice fed a normal or high-cholesterol diet. The results indicated that moderate red wine consumption did not alter locomotor parameters and liver toxicity. Across multiple cognitive tasks evaluating spatial learning/reference memory and recognition/identification memory, hypercholesterolemic mice drinking red wine performed significantly better than water group, regardless of diet. Additionally, immunofluorescence assays indicated a reduction of astrocyte activation and lectin stain in the hippocampus of LDLr-/- mice under consumption of red wine. These findings demonstrate that the moderate consumption of red wine attenuates short- and long-term memory decline associated with hypercholesterolemia in mice and suggest that it could be through a neurovascular action.


Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hipercolesterolemia/complicações , Receptores de LDL/fisiologia , Vinho , Animais , Comportamento Animal , Encéfalo/irrigação sanguínea , Colesterol na Dieta/administração & dosagem , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatologia , Hepatopatias Alcoólicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores de LDL/deficiência , Receptores de LDL/genética
18.
Neurochem Res ; 45(12): 2868-2883, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32968860

RESUMO

Recent evidence suggests that young rodents submitted to high fructose (FRU) diet develop metabolic, and cognitive dysfunctions. However, it remains unclear whether these detrimental effects of FRU intake can also be observed in middle-aged mice. Nine months-old C57BL/6 female mice were fed with water (Control) or 10% FRU in drinking water during 12 weeks. After that, metabolic, and neurochemical alterations were evaluated, focusing on neurotransmitters, and antioxidant defenses. Behavioral parameters related to motor activity, memory, anxiety, and depression were also evaluated. Mice consuming FRU diet displayed increased water, and caloric intake, resulting in weight gain, which was partially compensated due to decreased food pellet intake. FRU fed animals displayed increased plasma glucose, and cholesterol levels, which was not observed in overnight-fasted animals. Superoxide dismutase (SOD), and catalase (CAT) activities were markedly decreased in the prefrontal cortex of animals receiving FRU diet, while glutathione peroxidase (GPx) slightly increased. Liver (lower GPx), striatum (higher SOD and lower CAT), and hippocampus (no changes) were less impacted. No changes were observed in glutathione reductase, and thioredoxin reductase activities, two ancillary enzymes for peroxide detoxification. FRU intake did not alter serotonin, dopamine, and norepinephrine levels in the hippocampus, prefrontal cortex, and striatum. No significant alterations were observed in working, and short-term spatial memory; and in anxiety- and depressive-like behaviors in animals treated with FRU. Increased locomotor activity was observed in FRU-fed middle-aged mice, as evaluated in the open field, elevated plus-maze, Y maze, and object location tasks. Overall, these results demonstrate that high FRU consumption can disturb antioxidant defenses, and increase locomotor activity in middle-aged mice, open the opportunity for further studies to address the underlying mechanisms related to these findings.


Assuntos
Catalase/metabolismo , Frutose/farmacologia , Locomoção/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Teste de Labirinto em Cruz Elevado , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos
19.
Comput Biol Med ; 124: 103925, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32889300

RESUMO

Diagnosis of Parkinson's disease (PD) remains a challenge in clinical practice, mostly due to lack of peripheral blood markers. Transcriptomic analysis of blood samples has emerged as a potential means to identify biomarkers and gene signatures of PD. In this context, classification algorithms can assist in detecting data patterns such as phenotypes and transcriptional signatures with potential diagnostic application. In this study, we performed gene expression meta-analysis of blood transcriptome from PD and control patients in order to identify a gene-set capable of predicting PD using classification algorithms. We examined microarray data from public repositories and, after systematic review, 4 independent cohorts (GSE6613, GSE57475, GSE72267 and GSE99039) comprising 711 samples (388 idiopathic PD and 323 healthy individuals) were selected. Initially, analysis of differentially expressed genes resulted in minimal overlap among datasets. To circumvent this, we carried out meta-analysis of 17,712 genes across datasets, and calculated weighted mean Hedges' g effect sizes. From the top-100- positive and negative gene effect sizes, algorithms of collinearity recognition and recursive feature elimination were used to generate a 59-gene signature of idiopathic PD. This signature was evaluated by 9 classification algorithms and 4 sample size-adjusted training groups to create 36 models. Of these, 33 showed accuracy higher than the non-information rate, and 2 models built on Support Vector Machine Regression bestowed best accuracy to predict PD and healthy control samples. In summary, the gene meta-analysis followed by machine learning methodology employed herein identified a gene-set capable of accurately predicting idiopathic PD in blood samples.


Assuntos
Doença de Parkinson , Transcriptoma , Algoritmos , Perfilação da Expressão Gênica , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Máquina de Vetores de Suporte , Transcriptoma/genética
20.
Oxid Med Cell Longev ; 2020: 8324565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733637

RESUMO

Degeneration of the locus coeruleus (LC), the main source of cerebral noradrenaline (NA), has been reported in diverse neurodegenerative diseases, including Parkinson's diseases (PD). There is increasing evidence indicating the role of NA deficiency in the prefrontal cortex (PFC) and the development of early cognitive impairments in PD. Here, we evaluated whether a selective noradrenergic lesion of LC caused by 6-hydroxydopamine (6-OHDA) may induce memory deficits and neurochemical alterations in the PFC. Adult male Wistar rats received stereotaxic bilateral injections of 6-OHDA (5 µg/2 µl) into the LC, and two stainless-steel guide cannulas were implanted in the PFC. The SHAM group received just vehicle. To induce a selective noradrenergic lesion, animals received nomifensine (10 mg/kg), a dopamine transporter blocker, one hour before surgery. 6-OHDA-lesioned rats displayed impairments of the short- and long-term object recognition memory associated to reduced content of tyrosine hydroxylase in the LC. Neurochemical analysis revealed an altered mitochondrial membrane potential in LC. Regarding the PFC, an increased ROS production, cell membrane damage, and mitochondrial membrane potential disruption were observed. Remarkably, bilateral NA (1 µg/0.2 µl) infusion into the PFC restored the recognition memory deficits in LC-lesioned rats. These findings indicate that a selective noradrenergic LC lesion induced by 6-OHDA deregulates a noradrenergic network in the PFC, which could be involved in the early memory impairments observed in nondemented PD patients.


Assuntos
Locus Cerúleo/patologia , Transtornos da Memória/patologia , Oxidopamina/efeitos adversos , Córtex Pré-Frontal/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA