Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654248

RESUMO

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidade
2.
Nat Immunol ; 25(5): 764-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609546

RESUMO

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Assuntos
Síndromes de Imunodeficiência , Proteínas do Tecido Nervoso , Ubiquitinas , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Feminino , Masculino , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Inflamação/imunologia , Inflamação/genética , Linfócitos B/imunologia , Mutação com Perda de Função , Fibroblastos/metabolismo , Fibroblastos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , Alelos
3.
Nat Immunol ; 24(1): 186-199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536106

RESUMO

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , Pandemias , Imunidade Adaptativa , Tonsila Palatina , Anticorpos Antivirais
4.
Sci Signal ; 15(743): eabl9169, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35857633

RESUMO

The integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP3). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP3-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1. We identified multiple proteins that regulated the binding of LFA-1 to ICAM-1, including the Rap1 and Ras GTPase-activating protein RASA3. We found that RASA3 suppressed LFA-1 activation in T cells, that its expression was rapidly reduced upon T cell activation, and that its activity was inhibited by PI3K. Loss of RASA3 in T cells led to increased Rap1 activation, defective lymph node entry and egress, and impaired responses to T-dependent immunization in mice. Our results reveal a critical role for RASA3 in T cell migration, homeostasis, and function.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Fosfatidilinositol 3-Quinases , Animais , Antígenos CD , Adesão Celular/genética , Moléculas de Adesão Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Ativadoras de GTPase , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T/metabolismo
5.
Mol Cell ; 82(18): 3398-3411.e11, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863348

RESUMO

Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Sítios de Ligação , Cromatina/genética , DNA/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Fatores de Transcrição/metabolismo
6.
Res Sq ; 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35350206

RESUMO

SARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants. We identified SARS-CoV-2-specific germinal center (GC) and memory B cells; single cell BCR sequencing showed that these virus-specific B cells were class-switched and somatically hypermutated, with overlapping clones in the adenoids and tonsils. Oropharyngeal tissues from COVID-19-convalescent children showed persistent expansion of GC and anti-viral lymphocyte populations associated with an IFN-γ-type response, with particularly prominent changes in the adenoids, as well as evidence of persistent viral RNA in both tonsil and adenoid tissues of many participants. Our results show robust, tissue-specific adaptive immune responses to SARS-CoV-2 in the upper respiratory tract of children weeks to months after acute infection, providing evidence of persistent localized immunity to this respiratory virus.

7.
Nat Commun ; 13(1): 805, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145086

RESUMO

T follicular helper (Tfh) cells provide signals to initiate and maintain the germinal center (GC) reaction and are crucial for the generation of robust, long-lived antibody responses, but how the GC microenvironment affects Tfh cells is not well understood. Here we develop an in vivo T cell-intrinsic CRISPR-knockout screen to evaluate Tfh and Th1 cells in an acute viral infection model to identify regulators of Tfh cells in their physiological setting. Using a screen of druggable-targets, alongside genetic, transcriptomic and cellular analyses, we identify a function of HIF-1α in suppressing mTORC1-mediated and Myc-related pathways, and provide evidence that VHL-mediated degradation of HIF-1α is required for Tfh development; an expanded in vivo CRISPR screen reveals multiple components of these pathways that regulate Tfh versus Th1 cells, including signaling molecules, cell-cycle regulators, nutrient transporters, metabolic enzymes and autophagy mediators. Collectively, our data serve as a resource for studying Tfh versus Th1 decisions, and implicate the VHL-HIF-1α axis in fine-tuning Tfh generation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Animais , Formação de Anticorpos , Diferenciação Celular/imunologia , Expressão Gênica , Técnicas de Inativação de Genes , Centro Germinativo/imunologia , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunidade Humoral/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Viroses/imunologia
9.
Cell Rep ; 37(2): 109804, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644563

RESUMO

Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Memória Imunológica , Doenças da Imunodeficiência Primária/enzimologia , Transcrição Gênica , Viroses/enzimologia , Adolescente , Adulto , Animais , Apoptose , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Criança , Cromatina/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Modelos Animais de Doenças , Ativação Enzimática , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Transdução de Sinais , Viroses/genética , Viroses/imunologia
10.
Immunology ; 163(1): 3-18, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33064842

RESUMO

Upon activation, naïve CD4+ T helper (Th) cells differentiate into distinct Th effector cell lineages depending on the local cytokine environment. However, these polarized Th cells can also adapt their function and phenotype depending on the changing cytokine environment, demonstrating functional plasticity. Here, Th17 cells, which play a critical role in host protection from extracellular pathogens and in autoimmune disorders, are of particular interest. While being able to shift phenotype within their lineage, Th17 cells can also acquire characteristics of Th1, Th2, T follicular helper (Tfh) or regulatory T cells. Th17 cell identity is determined by a spectrum of extracellular signals, including cytokines, which are critical orchestrators of cellular immune responses. Cytokine induces changes in epigenetic, transcriptional, translational and metabolomic parameters. How these signals are integrated to determine Th17 plasticity is not well defined, yet this is a crucial point of investigation as it represents a potential target to treat autoimmune and inflammatory diseases. The goal of this review was to discuss how cytokines regulate intracellular networks, focusing on the regulation of lineage-specific transcription factors, chromatin remodelling and metabolism, to control human Th17 cell plasticity. We discuss the importance of Th17 plasticity in autoimmunity and cancer and present current strategies and challenges in targeting pathogenic Th17 cells with cytokine-based approaches, considering human genetic variants associated with altered Th17 differentiation. Finally, we discuss how modulating Th17 plasticity rather than targeting the Th17 lineage as a whole might preserve its essential immune function while purging its adverse effects.


Assuntos
Plasticidade Celular , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Células Th17/metabolismo , Animais , Autoimunidade , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Citocinas/genética , Epigênese Genética , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Fenótipo , Transdução de Sinais , Células Th17/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Evasão Tumoral , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 117(25): 14405-14411, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518111

RESUMO

Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is the most common periodic fever syndrome in children. The disease appears to cluster in families, but the pathogenesis is unknown. We queried two European-American cohorts and one Turkish cohort (total n = 231) of individuals with PFAPA for common variants previously associated with two other oropharyngeal ulcerative disorders, Behçet's disease and recurrent aphthous stomatitis. In a metaanalysis, we found that a variant upstream of IL12A (rs17753641) is strongly associated with PFAPA (OR 2.13, P = 6 × 10-9). We demonstrated that monocytes from individuals who are heterozygous or homozygous for this risk allele produce significantly higher levels of IL-12p70 upon IFN-γ and LPS stimulation than those from individuals without the risk allele. We also found that variants near STAT4, IL10, and CCR1-CCR3 were significant susceptibility loci for PFAPA, suggesting that the pathogenesis of PFAPA involves abnormal antigen-presenting cell function and T cell activity and polarization, thereby implicating both innate and adaptive immune responses at the oropharyngeal mucosa. Our results illustrate genetic similarities among recurrent aphthous stomatitis, PFAPA, and Behçet's disease, placing these disorders on a common spectrum, with recurrent aphthous stomatitis on the mild end, Behçet's disease on the severe end, and PFAPA intermediate. We propose naming these disorders Behçet's spectrum disorders to highlight their relationship. HLA alleles may be factors that influence phenotypes along this spectrum as we found new class I and II HLA associations for PFAPA distinct from Behçet's disease and recurrent aphthous stomatitis.


Assuntos
Síndrome de Behçet/genética , Febre/genética , Predisposição Genética para Doença , Linfadenite/genética , Faringite/genética , Estomatite Aftosa/genética , Alelos , Síndrome de Behçet/imunologia , Criança , Estudos de Coortes , Febre/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Loci Gênicos/imunologia , Humanos , Linfadenite/imunologia , Faringite/imunologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Estomatite Aftosa/imunologia , Síndrome
12.
Immunol Rev ; 291(1): 154-173, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402502

RESUMO

Phosphatidylinositol 3 kinases (PI3K) are a family of lipid kinases that are activated by a variety of cell-surface receptors, and regulate a wide range of downstream readouts affecting cellular metabolism, growth, survival, differentiation, adhesion, and migration. The importance of these lipid kinases in lymphocyte signaling has recently been highlighted by genetic analyses, including the recognition that both activating and inactivating mutations of the catalytic subunit of PI3Kδ, p110δ, lead to human primary immunodeficiencies. In this article, we discuss how studies on the human genetic disorder "Activated PI3K-delta syndrome" and mouse models of this disease (Pik3cdE1020K/+ mice) have provided fundamental insight into pathways regulated by PI3Kδ in T and B cells and their contribution to lymphocyte function and disease, including responses to commensal bacteria and the development of autoimmunity and tumors. We highlight critical roles of PI3Kδ in T follicular helper cells and the orchestration of the germinal center reaction, as well as in CD8+ T-cell function. We further  present data demonstrating the ability of the AKT-resistant FOXO1AAA mutant to rescue IgG1 class switching defects in Pik3cdE1020K/+ B cells, as well as data supporting a role for PI3Kδ in promoting multiple T-helper effector cell lineages.


Assuntos
Linfócitos B/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , Autoimunidade , Linfócitos B/imunologia , Biomarcadores , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunoterapia , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/terapia , Doenças da Imunodeficiência Primária/etiologia , Doenças da Imunodeficiência Primária/metabolismo , Linfócitos T/imunologia
13.
Front Immunol ; 9: 1758, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116245

RESUMO

Activated phosphoinositide 3-kinase delta syndrome (APDS), also known as p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI), is an autosomal dominant primary human immunodeficiency (PID) caused by heterozygous gain-of-function mutations in PIK3CD, which encodes the p110δ catalytic subunit of PI3K. This recently described PID is characterized by diverse and heterogeneous clinical manifestations that include recurrent respiratory infections, lymphoproliferation, progressive lymphopenia, and defective antibody responses. A major clinical manifestation observed in the NIH cohort of patients with PIK3CD mutations is chronic Epstein-Barr virus (EBV) and/or cytomegalovirus viremia. Despite uncontrolled EBV infection, many APDS/PASLI patients had normal or higher frequencies of EBV-specific CD8+ T cells. In this review, we discuss data pertaining to CD8+ T cell function in APDS/PASLI, including increased cell death, expression of exhaustion markers, and altered killing of autologous EBV-infected B cells, and how these and other data on PI3K provide insight into potential cellular defects that prevent clearance of chronic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Infecções por Vírus Epstein-Barr/imunologia , Síndromes de Imunodeficiência/imunologia , Adolescente , Adulto , Animais , Diferenciação Celular , Sobrevivência Celular , Senescência Celular , Criança , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/imunologia , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/genética , Camundongos , Mutação , Doenças da Imunodeficiência Primária , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Adulto Jovem
14.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127432

RESUMO

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Assuntos
Linfócitos B/fisiologia , Microbioma Gastrointestinal/imunologia , Centro Germinativo/fisiologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Autoanticorpos/sangue , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Imunidade Humoral/genética , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
15.
Front Immunol ; 9: 3079, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666254

RESUMO

T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency "Activated PI3K-delta Syndrome" (APDS), also known as "p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency" (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses.


Assuntos
Autoimunidade/fisiologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Diferenciação Celular , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Centro Germinativo/imunologia , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucina-2/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Camundongos , Doenças da Imunodeficiência Primária , Fator 1 de Transcrição de Linfócitos T/metabolismo
16.
PLoS One ; 11(6): e0156072, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258160

RESUMO

The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors.


Assuntos
Centro Germinativo/metabolismo , Células T Matadoras Naturais/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Animais , Linfócitos B/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/metabolismo
17.
Nat Commun ; 7: 11541, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189410

RESUMO

CD4(+) Th17 are heterogeneous in terms of cytokine production and capacity to initiate autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that experimental priming of encephalitogenic Th cells expressing RORγt and T-bet and producing IL-17A, IFN-γ and GM-CSF but not IL-10 (Th1/Th17), is dependent on the presence of pertussis toxin (PTX) at the time of immunization. PTX induces early production of IL-1ß by CD11b(+)CCR2(+)Gr1(+) myeloid cells, which are rapidly recruited to antigen-draining lymph nodes. PTX-induced generation of Th1/Th17 cells is impaired in IL-1ß- and ASC-deficient mice and in mice in which myeloid cells are depleted or fail to migrate to lymph nodes and requires expression of IL-1R1 and MyD88 on both T cells and non-T cells. Collectively, these data shed light on the enigmatic function of PTX in EAE induction and suggest that inflammatory monocytes and microbial infection can influence differentiation of pathogenic Th1/Th17 cells in autoimmune diseases through production of IL-1ß.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental/imunologia , Toxina Pertussis/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Receptores Tipo I de Interleucina-1/metabolismo
18.
Eur J Immunol ; 45(11): 3010-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26332258

RESUMO

We previously reported that Cd3e-deficient mice adoptively transferred with CD4(+) T cells generate high numbers of T follicular helper (Tfh) cells, which go on to induce a strong B-cell and germinal center (GC) reaction. Here, we show that in this system, GC B cells display an altered distribution between the dark and light zones, and express low levels of activation-induced cytidine deaminase. Furthermore, GC B cells from Cd3e(-/-) mice accumulate fewer somatic mutations as compared with GC B cells from wild-type mice, and exhibit impaired affinity maturation and reduced differentiation into long-lived plasma cells. Reconstitution of Cd3e(-/-) mice with regulatory T (Treg) cells restored Tfh-cell numbers, GC B-cell numbers and B-cell distribution within dark and light zones, and the rate of antibody somatic mutations. Tfh-cell numbers and GC B-cell numbers and dynamics were also restored by pre-reconstitution of Cd3e(-/-) mice with Cxcr5(-/-) Treg cells or non-regulatory, memory CD4(+) T cells. Taken together, these findings underline the importance of a quantitatively regulated Tfh-cell response for an efficient and long-lasting serological response.


Assuntos
Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Mutação , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Complexo CD3/imunologia , Diferenciação Celular/imunologia , Citometria de Fluxo , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
19.
Proc Natl Acad Sci U S A ; 111(50): 17965-70, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453106

RESUMO

The use of neutralizing antibodies to identify the most effective antigen has been proposed as a strategy to design vaccines capable of eliciting protective B-cell immunity. In this study, we analyzed the human antibody response to cytomegalovirus (human cytomegalovirus, HCMV) infection and found that antibodies to glycoprotein (g)B, a surface glycoprotein that has been developed as a HCMV vaccine, were primarily nonneutralizing. In contrast, most of the antibodies to the complex formed by gH, gL, protein (p)UL128, pUL130, and pUL131 (the gHgLpUL128L pentamer) neutralized HCMV infection with high potency. Based on this analysis, we developed a single polycistronic vector encoding the five pentamer genes separated by "self-cleaving" 2A peptides to generate a stably transfected CHO cell line constitutively secreting high levels of recombinant pentamer that displayed the functional antigenic sites targeted by human neutralizing antibodies. Immunization of mice with the pentamer formulated with different adjuvants elicited HCMV neutralizing antibody titers that persisted to high levels over time and that were a hundred- to thousand-fold higher than those found in individuals that recovered from primary HCMV infection. Sera from mice immunized with the pentamer vaccine neutralized infection of both epithelial cells and fibroblasts and prevented cell-to-cell spread and viral dissemination from endothelial cells to leukocytes. Neutralizing monoclonal antibodies from immunized mice showed the same potency as human antibodies and targeted the same as well as additional sites on the pentamer. These results illustrate with a relevant example a general and practical approach of analytic vaccinology for the development of subunit vaccines against complex pathogens.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Vacinas contra Citomegalovirus/imunologia , Desenho de Fármacos , Animais , Anticorpos Monoclonais/imunologia , Antígenos Virais/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos , Estatísticas não Paramétricas , Vacinas de Subunidades Antigênicas/imunologia
20.
Immunity ; 38(3): 596-605, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23499493

RESUMO

T follicular helper (Tfh) cells provide help to B cells and are crucial for establishment of germinal center (GC) reactions, including production of high-affinity antibodies and generation of memory B cells and long-lived plasma cells. Here we report that the magnitude of the Tfh cell response was dictated by the amount of antigen and directly correlated with the magnitude of the GC B cell response. In addition, maintenance of the Tfh cell phenotype required sustained antigenic stimulation by GC B cells. In lymphopenic conditions, a strong and prolonged Tfh cell response led to bystander B cell activation, hypergammaglobulinemia, and production of poly- and self-reactive antibodies. These data demonstrate that antigen dose determines the size and duration of the Tfh cell response and GC reaction, highlight the transient nature of the Tfh cell phenotype, and suggest a link between overstimulation of Tfh cells and the development of dysregulated humoral immune responses.


Assuntos
Antígenos/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anticorpos/imunologia , Linfócitos B/metabolismo , Complexo CD3/genética , Complexo CD3/imunologia , Complexo CD3/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Centro Germinativo/metabolismo , Humanos , Imunização/métodos , Imunofenotipagem , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ligação Proteica/imunologia , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA