Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS One ; 18(3): e0283548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989327

RESUMO

As synthetic biology expands and accelerates into real-world applications, methods for quantitatively and precisely engineering biological function become increasingly relevant. This is particularly true for applications that require programmed sensing to dynamically regulate gene expression in response to stimuli. However, few methods have been described that can engineer biological sensing with any level of quantitative precision. Here, we present two complementary methods for precision engineering of genetic sensors: in silico selection and machine-learning-enabled forward engineering. Both methods use a large-scale genotype-phenotype dataset to identify DNA sequences that encode sensors with quantitatively specified dose response. First, we show that in silico selection can be used to engineer sensors with a wide range of dose-response curves. To demonstrate in silico selection for precise, multi-objective engineering, we simultaneously tune a genetic sensor's sensitivity (EC50) and saturating output to meet quantitative specifications. In addition, we engineer sensors with inverted dose-response and specified EC50. Second, we demonstrate a machine-learning-enabled approach to predictively engineer genetic sensors with mutation combinations that are not present in the large-scale dataset. We show that the interpretable machine learning results can be combined with a biophysical model to engineer sensors with improved inverted dose-response curves.


Assuntos
Aprendizado de Máquina , Biologia Sintética , Biologia Sintética/métodos
2.
Proc Natl Acad Sci U S A ; 119(26): e2114021119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733251

RESUMO

Large-scale measurements linking genetic background to biological function have driven a need for models that can incorporate these data for reliable predictions and insight into the underlying biophysical system. Recent modeling efforts, however, prioritize predictive accuracy at the expense of model interpretability. Here, we present LANTERN (landscape interpretable nonparametric model, https://github.com/usnistgov/lantern), a hierarchical Bayesian model that distills genotype-phenotype landscape (GPL) measurements into a low-dimensional feature space that represents the fundamental biological mechanisms of the system while also enabling straightforward, explainable predictions. Across a benchmark of large-scale datasets, LANTERN equals or outperforms all alternative approaches, including deep neural networks. LANTERN furthermore extracts useful insights of the landscape, including its inherent dimensionality, a latent space of additive mutational effects, and metrics of landscape structure. LANTERN facilitates straightforward discovery of fundamental mechanisms in GPLs, while also reliably extrapolating to unexplored regions of genotypic space.


Assuntos
Interação Gene-Ambiente , Genótipo , Redes Neurais de Computação , Fenótipo , Teorema de Bayes , Mutação
4.
Mol Syst Biol ; 17(3): e10179, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784029

RESUMO

Allostery is a fundamental biophysical mechanism that underlies cellular sensing, signaling, and metabolism. Yet a quantitative understanding of allosteric genotype-phenotype relationships remains elusive. Here, we report the large-scale measurement of the genotype-phenotype landscape for an allosteric protein: the lac repressor from Escherichia coli, LacI. Using a method that combines long-read and short-read DNA sequencing, we quantitatively measure the dose-response curves for nearly 105 variants of the LacI genetic sensor. The resulting data provide a quantitative map of the effect of amino acid substitutions on LacI allostery and reveal systematic sequence-structure-function relationships. We find that in many cases, allosteric phenotypes can be quantitatively predicted with additive or neural-network models, but unpredictable changes also occur. For example, we were surprised to discover a new band-stop phenotype that challenges conventional models of allostery and that emerges from combinations of nearly silent amino acid substitutions.


Assuntos
Genótipo , Repressores Lac/metabolismo , Fenótipo , Regulação Alostérica , Substituição de Aminoácidos , Escherichia coli/genética , Variação Genética
5.
Nucleic Acids Res ; 49(12): e67, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33772580

RESUMO

Characterizing genotype-phenotype relationships of biomolecules (e.g. ribozymes) requires accurate ways to measure activity for a large set of molecules. Kinetic measurement using high-throughput sequencing (e.g. k-Seq) is an emerging assay applicable in various domains that potentially scales up measurement throughput to over 106 unique nucleic acid sequences. However, maximizing the return of such assays requires understanding the technical challenges introduced by sequence heterogeneity and DNA sequencing. We characterized the k-Seq method in terms of model identifiability, effects of sequencing error, accuracy and precision using simulated datasets and experimental data from a variant pool constructed from previously identified ribozymes. Relative abundance, kinetic coefficients, and measurement noise were found to affect the measurement of each sequence. We introduced bootstrapping to robustly quantify the uncertainty in estimating model parameters and proposed interpretable metrics to quantify model identifiability. These efforts enabled the rigorous reporting of data quality for individual sequences in k-Seq experiments. Here we present detailed protocols, define critical experimental factors, and identify general guidelines to maximize the number of sequences and their measurement accuracy from k-Seq data. Analogous practices could be applied to improve the rigor of other sequencing-based assays.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Catalítico , Análise de Sequência de DNA/métodos , Cinética , Modelos Biológicos , Mutação , RNA Catalítico/genética
6.
Curr Opin Syst Biol ; 23: 32-37, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34611570

RESUMO

Precise engineering of biological systems requires quantitative, high-throughput measurements, exemplified by progress in directed evolution. New approaches allow high-throughput measurements of phenotypes and their corresponding genotypes. When integrated into directed evolution, these quantitative approaches enable the precise engineering of biological function. At the same time, the increasingly routine availability of large, high-quality data sets supports the integration of machine learning with directed evolution. Together, these advances herald striking capabilities for engineering biology.

7.
J Am Chem Soc ; 141(15): 6213-6223, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30912655

RESUMO

Molecular evolution can be conceptualized as a walk over a "fitness landscape", or the function of fitness (e.g., catalytic activity) over the space of all possible sequences. Understanding evolution requires knowing the structure of the fitness landscape and identifying the viable evolutionary pathways through the landscape. However, the fitness landscape for any catalytic biomolecule is largely unknown. The evolution of catalytic RNA is of special interest because RNA is believed to have been foundational to early life. In particular, an essential activity leading to the genetic code would be the reaction of ribozymes with activated amino acids, such as 5(4 H)-oxazolones, to form aminoacyl-RNA. Here we combine in vitro selection with a massively parallel kinetic assay to map a fitness landscape for self-aminoacylating RNA, with nearly complete coverage of sequence space in a central 21-nucleotide region. The method (SCAPE: sequencing to measure catalytic activity paired with in vitro evolution) shows that the landscape contains three major ribozyme families (landscape peaks). An analysis of evolutionary pathways shows that, while local optimization within a ribozyme family would be possible, optimization of activity over the entire landscape would be frustrated by large valleys of low activity. The sequence motifs associated with each peak represent different solutions to the problem of catalysis, so the inability to traverse the landscape globally corresponds to an inability to restructure the ribozyme without losing activity. The frustrated nature of the evolutionary network suggests that chance emergence of a ribozyme motif would be more important than optimization by natural selection.


Assuntos
RNA Catalítico/metabolismo , RNA/metabolismo , Acilação , Biocatálise , Estrutura Molecular , Oxazolona/química , Oxazolona/metabolismo , RNA/química , RNA Catalítico/química
8.
Annu Rev Biophys ; 48: 1-18, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30601678

RESUMO

The function of fitness (or molecular activity) in the space of all possible sequences is known as the fitness landscape. Evolution is a random walk on the fitness landscape, with a bias toward climbing hills. Mapping the topography of real fitness landscapes is fundamental to understanding evolution, but previous efforts were hampered by the difficulty of obtaining large, quantitative data sets. The accessibility of high-throughput sequencing (HTS) has transformed this study, enabling large-scale enumeration of fitness for many mutants and even complete sequence spaces in some cases. We review the progress of high-throughput studies in mapping molecular fitness landscapes, both in vitro and in vivo, as well as opportunities for future research. Such studies are rapidly growing in number. HTS is expected to have a profound effect on the understanding of real molecular fitness landscapes.


Assuntos
Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Evolução Molecular , Modelos Genéticos , Mutação
10.
BMC Genomics ; 18(1): 639, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28826405

RESUMO

BACKGROUND: The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. RESULTS: Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis of the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. CONCLUSIONS: Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO2 and formate are common electron carriers in microbial communities.


Assuntos
Metabolismo Energético/genética , Genômica , Metano/biossíntese , Methanobacterium/genética , Methanobacterium/metabolismo , Anaerobiose , Proteínas Arqueais/metabolismo
11.
Nucleic Acids Res ; 45(14): 8167-8179, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28645146

RESUMO

The emergence of catalytic RNA is believed to have been a key event during the origin of life. Understanding how catalytic activity is distributed across random sequences is fundamental to estimating the probability that catalytic sequences would emerge. Here, we analyze the in vitro evolution of triphosphorylating ribozymes and translate their fitnesses into absolute estimates of catalytic activity for hundreds of ribozyme families. The analysis efficiently identified highly active ribozymes and estimated catalytic activity with good accuracy. The evolutionary dynamics follow Fisher's Fundamental Theorem of Natural Selection and a corollary, permitting retrospective inference of the distribution of fitness and activity in the random sequence pool for the first time. The frequency distribution of rate constants appears to be log-normal, with a surprisingly steep dropoff at higher activity, consistent with a mechanism for the emergence of activity as the product of many independent contributions.


Assuntos
Evolução Molecular Direcionada , Mutação , RNA Catalítico/genética , RNA/genética , Algoritmos , Biocatálise , Modelos Genéticos , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , Seleção Genética , Especificidade por Substrato
12.
Curr Biol ; 25(19): R953-63, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26439358

RESUMO

Understanding how life arose is a fundamental problem of biology. Much progress has been made by adopting a synthetic and mechanistic perspective on originating life. We present a current view of the biochemistry of the origin of life, focusing on issues surrounding the emergence of an RNA World in which RNA dominated informational and functional roles. There is cause for optimism on this difficult problem: the prebiotic chemical inventory may not have been as nightmarishly complex as previously thought; the catalytic repertoire of ribozymes continues to expand, approaching the goal of self-replicating RNA; encapsulation in protocells provides evolutionary and biophysical advantages. Nevertheless, major issues remain unsolved, such as the origin of a genetic code. Attention to this field is particularly timely given the accelerating discovery and characterization of exoplanets.


Assuntos
Modelos Biológicos , Origem da Vida , RNA/química , RNA/genética , Evolução Molecular , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA