Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(10): 4649-4659, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37018305

RESUMO

New technologies are transforming medicine, and this revolution starts with data. Usually, health services within public healthcare systems are accessed through a booking centre managed by local health authorities and controlled by the regional government. In this perspective, structuring e-health data through a Knowledge Graph (KG) approach can provide a feasible method to quickly and simply organize data and/or retrieve new information. Starting from raw health bookings data from the public healthcare system in Italy, a KG method is presented to support e-health services through the extraction of medical knowledge and novel insights. By exploiting graph embedding which arranges the various attributes of the entities into the same vector space, we are able to apply Machine Learning (ML) techniques to the embedded vectors. The findings suggest that KGs could be used to assess patients' medical booking patterns, either from unsupervised or supervised ML. In particular, the former can determine possible presence of hidden groups of entities that is not immediately available through the original legacy dataset structure. The latter, although the performance of the used algorithms is not very high, shows encouraging results in predicting a patient's likelihood to undergo a particular medical visit within a year. However, many technological advances remain to be made, especially in graph database technologies and graph embedding algorithms.


Assuntos
Aprendizado de Máquina , Telemedicina , Humanos , Aprendizado de Máquina Supervisionado , Bases de Dados Factuais , Probabilidade , Algoritmos
2.
IEEE J Biomed Health Inform ; 26(10): 4869-4879, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648462

RESUMO

Nowadays, predictive medicine begins to become a reality thanks to Artificial Intelligence (AI) which allows, through the processing of huge amounts of data, to identify correlations not perceptible to the human brain. The application of AI in predictive diagnostics is increasingly pervasive; through the use and interpretation of data, the first signs of some diseases (i.e. tumours) can be detected to help physicians make more accurate diagnoses to reduce the errors and develop methods for individualized medical treatment. In this perspective, salivary gland tumours (SGTs) are rare cancers with variable malignancy representing less than 1% of all cancer diagnoses and about 5% of head and neck cancers. The clinical management of SGTs is complicated by a high rate of preclinical diagnostic errors. Today, fine needle aspiration cytology (FNAC) represents the primary diagnostic tool in the hands of clinicians. However, it provides information that about 25% of cases are dubious or inconclusive, complicating therapeutic choices. Thus, finding new tools supporting clinicians to make the right choices in doubtful cases is necessary. This research work presents and discusses a Deep Learning-based framework for automatic segmentation and classification of salivary gland tumours. Furthermore, we propose an explainable segmentation learning approach supporting the effectiveness of the proposed framework through a per-epoch learning process analysis and the attention map mechanism. The proposed framework was evaluated with a collected CT dataset of patients with salivary gland tumours. Experimental results show that our methodology achieves significant scores on both segmentation and classification tasks.


Assuntos
Aprendizado Profundo , Neoplasias das Glândulas Salivares , Inteligência Artificial , Humanos , Medicina de Precisão , Estudos Retrospectivos , Neoplasias das Glândulas Salivares/diagnóstico por imagem , Neoplasias das Glândulas Salivares/patologia
3.
Sci Rep ; 11(1): 5683, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707543

RESUMO

Potential Celiac Patients (PCD) bear the Celiac Disease (CD) genetic predisposition, a significant production of antihuman transglutaminase antibodies, but no morphological changes in the small bowel mucosa. A minority of patients (17%) showed clinical symptoms and need a gluten free diet at time of diagnosis, while the majority progress over several years (up to a decade) without any clinical problem neither a progression of the small intestine mucosal damage even when they continued to assume gluten in their diet. Recently we developed a traditional multivariate approach to predict the natural history, on the base of the information at enrolment (time 0) by a discriminant analysis model. Still, the traditional multivariate model requires stringent assumptions that may not be answered in the clinical setting. Starting from a follow-up dataset available for PCD, we propose the application of Machine Learning (ML) methodologies to extend the analysis on available clinical data and to detect most influent features predicting the outcome. These features, collected at time of diagnosis, should be capable to classify patients who will develop duodenal atrophy from those who will remain potential. Four ML methods were adopted to select features predictive of the outcome; the feature selection procedure was indeed capable to reduce the number of overall features from 85 to 19. ML methodologies (Random Forests, Extremely Randomized Trees, and Boosted Trees, Logistic Regression) were adopted, obtaining high values of accuracy: all report an accuracy above 75%. The specificity score was always more than 75% also, with two of the considered methods over 98%, while the best performance of sensitivity was 60%. The best model, optimized Boosted Trees, was able to classify PCD starting from the selected 19 features with an accuracy of 0.80, sensitivity of 0.58 and specificity of 0.84. Finally, with this work, we are able to categorize PCD patients that can more likely develop overt CD using ML. ML techniques appear to be an innovative approach to predict the outcome of PCD, since they provide a step forward in the direction of precision medicine aimed to customize healthcare, medical therapies, decisions, and practices tailoring the clinical management of PCD children.


Assuntos
Doença Celíaca/diagnóstico , Aprendizado de Máquina , Medicina de Precisão , Seguimentos , Humanos , Prognóstico
4.
Sci Rep ; 10(1): 14623, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884091

RESUMO

Nowadays, data-driven methodologies based on the clinical history of patients represent a promising research field in which personalized and intelligent healthcare systems can be opportunely designed and developed. In this perspective, Machine Learning (ML) algorithms can be efficiently adopted to deploy smart services to enhance the overall quality of healthcare systems. In this work, starting from an in-depth analysis of a data set composed of millions of medical booking records collected from the public healthcare organization in the region of Campania, Italy, we have developed a predictive model to extract useful knowledge on patients, medical staff, and related healthcare structures. In more detail, the main contribution is to suggest a Deep Learning (DL) methodology able to predict the access of a patient in one or more medical facilities of a fixed set in the immediate future, the subsequent 2 months. A structured Temporal Convolutional Neural Network (TCNN) is designed to extract temporal patterns from the administrative medical history of a patient. The experiment shows the goodness of the designed methodology. Finally, this work represents a novel application of a TCNN model to a multi-label classification problem not linked to text categorization or image recognition.


Assuntos
Algoritmos , Agendamento de Consultas , Aprendizado Profundo , Visita a Consultório Médico/estatística & dados numéricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA