Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Diving Hyperb Med ; 54(2): 86-91, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870949

RESUMO

Introduction: Tasmania is a small island state off the southern edge of Australia where a comparatively high proportion of the 558,000 population partake in recreational or occupational diving. While diving is a relatively safe sport and occupation, Tasmania has a significantly higher diving death rate per head of population than other States in Australia (four times the national diving mortality rate). Methods: Three compressed gas diving deaths occurred in seven months between 2021-2022 prompting a review of the statewide approach for the immediate response of personnel to diving-related deaths. The review engaged first responders including the Police Marine and Rescue Service, hospital-based departments including the Department of Hyperbaric and Diving Medicine, and the mortuary and coroner's office. Results: An aide-mémoire for all craft groups, digitalised checklists for first responders (irrespective of diving knowledge), and a single-paged algorithm to highlight inter-agency communication pathways in the event of a diving death were designed to enhance current practices and collaboration. Conclusions: If used, these aids for managing diving related deaths should ensure that time-critical information is appropriately captured and stored to optimise information provided for the coronial investigation.


Assuntos
Mergulho , Mergulho/estatística & dados numéricos , Humanos , Tasmânia/epidemiologia , Masculino , Lista de Checagem , Doença da Descompressão/mortalidade , Doença da Descompressão/terapia , Adulto , Feminino , Algoritmos , Socorristas/estatística & dados numéricos , Pessoa de Meia-Idade
3.
Sci Robot ; 8(82): eadg6042, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729423

RESUMO

A major advantage of surgical robots is that they can reduce the invasiveness of a procedure by enabling the clinician to manipulate tools as they would in open surgery but through small incisions in the body. Neurosurgery has yet to benefit from this advantage. Although clinical robots are available for the least invasive neurosurgical procedures, such as guiding electrode insertion, the most invasive brain surgeries, such as tumor resection, are still performed as open manual procedures. To investigate whether robotics could reduce the invasiveness of major brain surgeries while still providing the manipulation capabilities of open surgery, we created a two-armed joystick-controlled endoscopic robot. To evaluate the efficacy of this robot, we developed a set of neurosurgical skill tasks patterned after the steps of brain tumor resection. We also created a patient-derived brain model for pineal tumors, which are located in the center of the brain and are normally removed by open surgery. In comparison, testing with existing manual endoscopic instrumentation, we found that the robot provided access to a much larger working volume at the trocar tip and enabled bimanual tasks without compression of brain tissue adjacent to the trocar. Furthermore, many tasks could be completed faster with the robot. These results suggest that robotics has the potential to substantially reduce the invasiveness of brain surgery by enabling certain procedures currently performed as open surgery to be converted to endoscopic interventions.


Assuntos
Robótica , Humanos , Neurocirurgiões , Extremidade Superior , Mãos , Endoscópios
4.
World Neurosurg ; 176: 127-139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36639101

RESUMO

Intraoperative MRI has been increasingly used to robotically deliver electrodes and catheters into the human brain using a linear trajectory with great clinical success. Current cranial MR guided robotics do not allow for continuous real-time imaging during the procedure because most surgical instruments are not MR-conditional. MRI guided robotic cranial surgery can achieve its full potential if all the traditional advantages of robotics (such as tremor-filtering, precision motion scaling, etc.) can be incorporated with the neurosurgeon physically present in the MRI bore or working remotely through controlled robotic arms. The technological limitations of design optimization, choice of sensing, kinematic modeling, physical constraints, and real-time control had hampered early developments in this emerging field, but continued research and development in these areas over time has granted neurosurgeons far greater confidence in using cranial robotic techniques. This article elucidates the role of MR-guided robotic procedures using clinical devices like NeuroBlate and Clearpoint that have several thousands of cases operated in a "linear cranial trajectory" and planned clinical trials, such as LAANTERN for MR guided robotics in cranial neurosurgery using LITT and MR-guided putaminal delivery of AAV2 GDNF in Parkinson's disease. The next logical improvisation would be a steerable curvilinear trajectory in cranial robotics with added DOFs and distal tip dexterity to the neurosurgical tools. Similarly, the novel concept of robotic actuators that are powered, imaged, and controlled by the MRI itself is discussed in this article, with its potential for seamless cranial neurosurgery.


Assuntos
Neurocirurgia , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Imageamento por Ressonância Magnética
5.
Sci Transl Med ; 12(531)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075944

RESUMO

Congenital heart valve disease has life-threatening consequences that warrant early valve replacement; however, the development of a growth-accommodating prosthetic valve has remained elusive. Thousands of children continue to face multiple high-risk open-heart operations to replace valves that they have outgrown. Here, we demonstrate a biomimetic prosthetic valve that is geometrically adaptable to accommodate somatic growth and structural asymmetries within the heart. Inspired by the human venous valve, whose geometry is optimized to preserve functionality across a wide range of constantly varying volume loads and diameters, our balloon-expandable synthetic bileaflet valve analog exhibits similar adaptability to dimensional and shape changes. Benchtop and acute in vivo experiments validated design functionality, and in vivo survival studies in growing sheep demonstrated that mechanical valve expansion accommodated growth. As illustrated in this work, dynamic size adaptability with preservation of unidirectional flow in prosthetic valves thus offers a paradigm shift in the treatment of heart valve disease.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Próteses Valvulares Cardíacas , Valvas Cardíacas , Desenho de Prótese
6.
J Thorac Cardiovasc Surg ; 158(5): 1332-1340, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31005306

RESUMO

OBJECTIVE: We sought to develop an instrument that would enable the delivery of artificial chordae tendineae (ACT) using optical visualization of the leaflet inside the beating heart. METHODS: A delivery instrument was developed together with an ACT anchor system. The instrument incorporates an optically clear silicone grasping surface in which are embedded a camera and LED for direct leaflet visualization during localization, grasping, and chordal delivery. ACTs, comprised of T-shaped anchors and an expanded polytetrafluoroethylene chordae, were fabricated to enable testing in a porcine model. Ex vivo experiments were used to measure the anchor tear-out force from the mitral leaflets. In vivo experiments were performed in which the mitral leaflets were accessed transapically using only optical guidance and ACTs were deployed in the posterior and anterior leaflets (P2 and A2 segments). RESULTS: In 5 porcine ex vivo experiments, the mean force required to tear the anchors from the leaflets was 3.8 ± 1.2 N. In 5 porcine in vivo nonsurvival procedures, 14 ACTs were successfully placed in the leaflets (9 in P2 and 5 in A2). ACT implantation took an average of 3.22 ± 0.83 minutes from entry to exit through the apex. CONCLUSIONS: Optical visualization of the mitral leaflet during chordal placement is feasible and provides direct feedback to the operator throughout the deployment sequence. This enables visual confirmation of the targeted leaflet location, distance from the free edge, and successful deployment of the chordal anchor. Further studies are needed to refine and assess the device for clinical use.


Assuntos
Cordas Tendinosas/cirurgia , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas/normas , Imagem Óptica/métodos , Animais , Desenho de Equipamento , Implante de Prótese de Valva Cardíaca/métodos , Teste de Materiais/métodos , Valva Mitral/cirurgia , Prolapso da Valva Mitral/cirurgia , Modelos Anatômicos , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Suínos
7.
Sci Robot ; 3(14)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33141697

RESUMO

Robots that reside inside the body to restore or enhance biological function have long been a staple of science fiction. Creating such robotic implants poses challenges both in signaling between the implant and the biological host, as well as in implant design. To investigate these challenges, we created a robotic implant to perform in vivo tissue regeneration via mechanostimulation. The robot is designed to induce lengthening of tubular organs, such as the esophagus and intestines, by computer-controlled application of traction forces. Esophageal testing in swine demonstrates that the applied forces can induce cell proliferation and lengthening of the organ without a reduction in diameter, while the animal is awake, mobile, and able to eat normally. Such robots can serve as research tools for studying mechanotransduction-based signaling and can also be used clinically for conditions such as long-gap esophageal atresia and short bowel syndrome.

8.
Ann Thorac Surg ; 104(3): 1074-1079, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28838487

RESUMO

PURPOSE: There remains a paucity of direct visualization techniques for beating-heart intracardiac procedures. To address this need, we evaluated a novel cardioscope in the context of aortic paravalvular leaks (PVLs) localization and closure. DESCRIPTION: A porcine aortic PVL model was created using a custom-made bioprosthetic valve, and PVL presence was verified by epicardial echocardiography. Transapical delivery of occlusion devices guided solely by cardioscopy was attempted 13 times in a total of three pigs. Device retrieval after release was attempted six times. Echocardiography, morphologic evaluation, and delivery time were used to assess results. EVALUATION: Cardioscopic imaging enabled localization of PVLs via visualization of regurgitant jet flow in a paravalvular channel at the base of the prosthetic aortic valve. Occluders were successfully placed in 11 of 13 attempts (84.6%), taking on average 3:03 ± 1:34 min. Devices were cardioscopically removed successfully in three of six attempts (50%), taking 3:41 ± 1:46 min. No damage to the ventricle or annulus was observed at necropsy. CONCLUSIONS: Cardioscopy can facilitate intracardiac interventions by providing direct visualization of anatomic structures inside the blood-filled, beating-heart model.


Assuntos
Insuficiência da Valva Aórtica/cirurgia , Cateterismo Cardíaco/métodos , Procedimentos Cirúrgicos Cardíacos/métodos , Endoscopia/métodos , Próteses Valvulares Cardíacas/efeitos adversos , Insuficiência da Valva Mitral/cirurgia , Animais , Insuficiência da Valva Aórtica/diagnóstico , Modelos Animais de Doenças , Ecocardiografia Tridimensional , Ecocardiografia Transesofagiana , Insuficiência da Valva Mitral/diagnóstico , Falha de Prótese , Reoperação/métodos , Suínos
9.
Med Phys ; 43(9): 4983, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27587029

RESUMO

PURPOSE: Current treatment of intraventricular hemorrhage (IVH) involves cerebral shunt placement or an invasive brain surgery. Magnetic resonance-guided focused ultrasound (MRgFUS) applied to the brains of pediatric patients presents an opportunity to treat IVH in a noninvasive manner, termed "incision-less surgery." Current clinical and research focused ultrasound systems lack the capability to perform neonatal transcranial surgeries due to either range of motion or dexterity requirements. A novel robotic system is proposed to position a focused ultrasound transducer accurately above the head of a neonatal patient inside an MRI machine to deliver the therapy. METHODS: A clinical Philips Sonalleve MRgFUS system was expanded to perform transcranial treatment. A five degree-of-freedom MR-conditional robot was designed and manufactured using MR compatible materials. The robot electronics and control were integrated into existing Philips electronics and software interfaces. The user commands the position of the robot with a graphical user interface, and is presented with real-time MR imaging of the patient throughout the surgery. The robot is validated through a series of experiments that characterize accuracy, signal-to-noise ratio degeneration of an MR image as a result of the robot, MR imaging artifacts generated by the robot, and the robot's ability to operate in a representative surgical environment inside an MR machine. RESULTS: Experimental results show the robot responds reliably within an MR environment, has achieved 0.59 ± 0.25 mm accuracy, does not produce severe MR-imaging artifacts, has a workspace providing sufficient coverage of a neonatal brain, and can manipulate a 5 kg payload. A full system demonstration shows these characteristics apply in an application environment. CONCLUSIONS: This paper presents a comprehensive look at the process of designing and validating a new robot from concept to implementation for use in an MR environment. An MR conditional robot has been designed and manufactured to design specifications. The system has demonstrated its feasibility as a platform for MRgFUS interventions for neonatal patients. The success of the system in experimental trials suggests that it is ready to be used for validation of the transcranial intervention in animal studies.


Assuntos
Imageamento por Ressonância Magnética , Robótica , Crânio/cirurgia , Cirurgia Assistida por Computador/instrumentação , Procedimentos Cirúrgicos Ultrassônicos/instrumentação , Artefatos , Desenho de Equipamento , Humanos , Recém-Nascido , Razão Sinal-Ruído , Crânio/diagnóstico por imagem
10.
Neurosurg Focus ; 41(3): E13, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27581309

RESUMO

OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments-a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)-is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope's ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device's utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy.


Assuntos
Desenho de Equipamento/normas , Imageamento por Ressonância Magnética/normas , Neuroendoscópios/normas , Neuroendoscopia/normas , Maleabilidade , Animais , Desenho de Equipamento/métodos , Feminino , Humanos , Neuroendoscopia/instrumentação , Neuroendoscopia/métodos , Suínos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 4883-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26737387

RESUMO

We present the design and experimental validation of a magnetorheological (MR) fluid-based passive actuator for tele-robotic bone biopsy procedures. With Finite Element Method Magnet (FEMM) software, the required uniform magnetic field circuit design was simulated. An 1100 turn 24 AWG copper wire coil wrapped around a magnetic core was used to create a magnetic field. The field strength was measured with a Hall effect sensor, and compared to the simulation. The maximum magnetic field flux produced by a constant current of 1.4 A was 0.2 T, similar to the simulation results. A series of quasi-static experiments were conducted to characterize the forces generated by the MR fluid-based actuator under various currents up to 12 N. An analytical model was developed to validate the measurements from the passive actuator.


Assuntos
Biópsia/instrumentação , Biópsia/métodos , Osso e Ossos , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Campos Magnéticos , Modelos Teóricos , Reprodutibilidade dos Testes , Reologia/instrumentação , Reologia/métodos , Robótica/instrumentação , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA