Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 96(12): 5010-5023, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30321366

RESUMO

The main objective of this study was to determine how feeding different dietary calcium (Ca) concentrations in combination with a negative dietary cation-anion difference (DCAD) would affect the cow's response to induced hypocalcemia. We conducted an experiment with multiparous, nonlactating, nonpregnant Holstein cows fed a negative DCAD (average -18.2 across all diets) for 21 d with low (LC; 0.45% Ca; n = 5), medium (MC; 1.13% Ca; n = 6), or high (HC; 2.02% Ca; n = 6) concentrations of dietary Ca. Urine and blood samples were collected and urine pH measured daily during the 21-d feeding period prior to hypocalcemia challenge. Cows were then subjected to a controlled induction of hypocalcemia to determine how dietary Ca intake affected the response to a hypocalcemia challenge. On days 22, 23, and 24, hypocalcemia was induced with an intravenous infusion of 5% EGTA in 2 different cows from each treatment daily. During infusion, blood samples were collected every 15 min until 60% of prechallenge ionized calcium (iCa) concentrations were achieved. Samples were collected postinfusion at 0, 2.5, 5, 10, 15, 30, and every 30 min thereafter until 90% of prechallenge iCa was reached. Blood pH, hematocrit, and serum total Ca (tCa), sodium (Na), potassium (K), phosphorous (P), magnesium (Mg), and serotonin did not differ (P > 0.05) among treatments during the feeding period. Blood iCa (P = 0.04) and glucose (P = 0.03) were significantly elevated in HC compared with LC and MC cows during the feeding period. Urine pH was less than 6.0 in all cows, but was lowest in LC (P = 0.02) compared with MC and HC cows during the feeding period. Urine Ca, P, Mg, and deoxypyridinoline did not differ among treatments (P > 0.05). Cows fed HC maintained higher concentrations of iCa (P = 0.03) during the challenge period than MC (P = 0.04), and LC (P = 0.004), and required a longer time to reach 60% of whole blood iCa, and required more EGTA to reach 60% iCa than MC or LC cows (P = 0.01). Serum tCa decreased in all cows during infusion (P < 0.0001) but did not differ among treatments. Serotonin concentrations were elevated in MC cows compared with HC and LC cows during EGTA infusion (P = 0.05), suggesting an interdependent relationship between iCa and serotonin. Cows fed HC had a slower rate of decrease in iCa, but not tCa, when induced with hypocalcemia, indicating potential metabolic benefits of feeding higher dietary Ca in combination with a negative DCAD.


Assuntos
Ração Animal/análise , Cálcio da Dieta/administração & dosagem , Cálcio/administração & dosagem , Dieta/veterinária , Hipocalcemia/veterinária , Animais , Ânions/metabolismo , Cálcio/metabolismo , Cátions/metabolismo , Bovinos , Ácido Egtázico/toxicidade , Feminino , Concentração de Íons de Hidrogênio , Hipocalcemia/induzido quimicamente , Minerais/metabolismo , Distribuição Aleatória , Urinálise
2.
PLoS One ; 12(9): e0184939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922379

RESUMO

Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP), the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver.


Assuntos
Lactação/sangue , Fígado/metabolismo , Período Pós-Parto/sangue , Serotonina/sangue , Animais , Glicemia/metabolismo , Caspase 3/metabolismo , Bovinos , Quinase 4 Dependente de Ciclina/metabolismo , Ácidos Graxos não Esterificados/sangue , Feminino , Glucagon/sangue , Insulina/sangue , Antígeno Ki-67/metabolismo , Gravidez , Receptor 5-HT2B de Serotonina/biossíntese
3.
J Endocrinol ; 230(1): 105-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27390301

RESUMO

Hypocalcemia is a metabolic disorder that affects dairy cows during the transition from pregnancy to lactation. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 days prepartum with either saline or 1.0mg/kg bodyweight of the immediate precursor to serotonin synthesis, 5hydroxy-l-tryptophan (5-HTP). On infusion days, blood was collected before, after, and at 2, 4, and 8h postinfusion. Blood and urine were collected daily before the infusion period, for 14 days postpartum and on day 30 postpartum. Milk was collected daily during the postpartum period. Feed intake and milk yield were unaffected by 5-HTP infusion postpartum. Cows infused with 5-HTP had elevated circulating serotonin concentrations prepartum. Infusion with 5-HTP induced a transient hypocalcemia in Jersey cows prepartum, but not in any other treatment. Holstein cows infused with saline had the highest milk calcium on the day of and day after parturition. Postpartum, circulating total calcium tended to be elevated, and urine deoxypyridinoline (DPD) concentrations were elevated in Holstein cows infused with 5-HTP. Overall, Jerseys had higher urine DPD concentrations postpartum when compared with Holsteins. Taken together, these data warrant further investigation of the potential therapeutic benefit of 5-HTP administration prepartum for prevention of hypocalcemia. Further research should focus on delineation of mechanisms associated with 5-HTP infusion that control calcium homeostasis during the peripartum period in Holstein and Jersey cows.


Assuntos
5-Hidroxitriptofano/farmacologia , Cálcio/análise , Leite/química , Serotonina/sangue , Animais , Peso Corporal/efeitos dos fármacos , Cálcio/sangue , Bovinos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Período Periparto
4.
J Endocrinol ; 226(1): 43-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26099356

RESUMO

A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (ßHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism.


Assuntos
Cálcio/metabolismo , Metabolismo Energético , Serotonina/metabolismo , Ácido 3-Hidroxibutírico/sangue , 5-Hidroxitriptofano/administração & dosagem , Animais , Glicemia/metabolismo , Cálcio/sangue , Cálcio/urina , Bovinos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Lactação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Leite/efeitos dos fármacos , Leite/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/sangue , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serotonina/sangue
5.
Mol Endocrinol ; 28(11): 1866-74, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25192038

RESUMO

Calcium homeostasis during lactation is critical for maternal and neonatal health. We previously showed that nonneuronal/peripheral serotonin [5-hydroxytryptamine (5-HT)] causes the lactating mammary gland to synthesize and secrete PTHrP in an acute fashion. Here, using a mouse model, we found that genetic inactivation of tryptophan hydroxylase 1 (Tph1), which catalyzes the rate-limiting step in peripheral 5-HT synthesis, reduced circulating and mammary PTHrP expression, osteoclast activity, and maternal circulating calcium concentrations during the transition from pregnancy to lactation. Tph1 inactivation also reduced sonic hedgehog signaling in the mammary gland during lactation. Each of these deficiencies was rescued by daily injections of 5-hydroxy-L-tryptophan (an immediate precursor of 5-HT) to Tph1-deficient dams. We used immortalized mouse embryonic fibroblasts to demonstrate that 5-HT induces PTHrP through a sonic hedgehog-dependent signal transduction mechanism. We also found that 5-HT altered DNA methylation of the Shh gene locus, leading to transcriptional initiation at an alternate start site and formation of a variant transcript in mouse embryonic fibroblasts in vitro and in mammary tissue in vivo. These results support a new paradigm of 5-HT-mediated Shh regulation involving DNA methylation remodeling and promoter switching. In addition to having immediate implications for lactation biology, identification and characterization of a novel functional regulatory relationship between nonneuronal 5-HT, hedgehog signaling, and PTHrP offers new avenues for the study of these important factors in development and disease.


Assuntos
Cálcio/metabolismo , Epigênese Genética/genética , Homeostase/genética , Lactação/genética , Lactação/metabolismo , Serotonina/metabolismo , Transdução de Sinais/genética , Animais , Metilação de DNA/genética , Feminino , Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , Serotonina/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA