Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 228: 115196, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921387

RESUMO

Antibody profiling is a fundamental component of understanding the humoral response in a wide range of disease areas. Most currently used approaches operate by capturing antibodies onto functionalised surfaces. Such measurements of surface binding are governed by an overall antibody titre, while the two fundamental molecular parameters, antibody affinity and antibody concentration, are challenging to determine individually from such approaches. Here, by applying microfluidic diffusional sizing (MDS), we show how we can overcome this challenge and demonstrate reliable quantification of alloantibody binding affinity and concentration of alloantibodies binding to Human Leukocyte Antigens (HLA), an extensively used clinical biomarker in organ transplantation, both in buffer and in crude human serum. Capitalising on the ability to vary both serum and HLA concentrations during MDS, we show that both affinity and concentration of HLA-specific antibodies can be determined directly in serum when neither of these parameters is known. Finally, we provide proof of principle in clinical transplant patient sera that our assay enables differentiation of alloantibody reactivity against HLA proteins of highly similar structure, providing information not attainable through currently available techniques. These results outline a path towards detection and in-depth profiling of humoral immunity and may enable further insights into the clinical relevance of antibody reactivity in clinical transplantation and beyond.


Assuntos
Técnicas Biossensoriais , Transplante de Rim , Humanos , Isoanticorpos , Afinidade de Anticorpos , Microfluídica , Antígenos HLA
2.
Front Immunol ; 14: 1296148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259440

RESUMO

Background: Patients with autoimmune/inflammatory conditions on anti-CD20 therapies, such as rituximab, have suboptimal humoral responses to vaccination and are vulnerable to poorer clinical outcomes following SARS-CoV-2 infection. We aimed to examine how the fundamental parameters of antibody responses, namely, affinity and concentration, shape the quality of humoral immunity after vaccination in these patients. Methods: We performed in-depth antibody characterisation in sera collected 4 to 6 weeks after each of three vaccine doses to wild-type (WT) SARS-CoV-2 in rituximab-treated primary vasculitis patients (n = 14) using Luminex and pseudovirus neutralisation assays, whereas we used a novel microfluidic-based immunoassay to quantify polyclonal antibody affinity and concentration against both WT and Omicron (B.1.1.529) variants. We performed comparative antibody profiling at equivalent timepoints in healthy individuals after three antigenic exposures to WT SARS-CoV-2 (one infection and two vaccinations; n = 15) and in convalescent patients after WT SARS-CoV-2 infection (n = 30). Results: Rituximab-treated patients had lower antibody levels and neutralisation titres against both WT and Omicron SARS-CoV-2 variants compared to healthy individuals. Neutralisation capacity was weaker against Omicron versus WT both in rituximab-treated patients and in healthy individuals. In the rituximab cohort, this was driven by lower antibody affinity against Omicron versus WT [median (range) KD: 21.6 (9.7-38.8) nM vs. 4.6 (2.3-44.8) nM, p = 0.0004]. By contrast, healthy individuals with hybrid immunity produced a broader antibody response, a subset of which recognised Omicron with higher affinity than antibodies in rituximab-treated patients [median (range) KD: 1.05 (0.45-1.84) nM vs. 20.25 (13.2-38.8) nM, p = 0.0002], underpinning the stronger serum neutralisation capacity against Omicron in the former group. Rituximab-treated patients had similar anti-WT antibody levels and neutralisation titres to unvaccinated convalescent individuals, despite two more exposures to SARS-CoV-2 antigen. Temporal profiling of the antibody response showed evidence of affinity maturation in healthy convalescent patients after a single SARS-CoV-2 infection, which was not observed in rituximab-treated patients, despite repeated vaccination. Discussion: Our results enrich previous observations of impaired humoral immune responses to SARS-CoV-2 in rituximab-treated patients and highlight the significance of quantitative assessment of serum antibody affinity and concentration in monitoring anti-viral immunity, viral escape, and the evolution of the humoral response.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Vacinas contra COVID-19 , Afinidade de Anticorpos , Microfluídica , Rituximab/uso terapêutico , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos
3.
HLA ; 94(5): 415-424, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403241

RESUMO

In the field of transplantation, the humoural immune response against mismatched HLA antigens of the donor is associated with inferior graft survival, but not in every patient. Donor-specific HLA antibodies (DSA) of different immunoglobulin G (IgG) subclasses may have differential effects on the transplanted organ. Recombinant technology allows for the generation of IgG subclasses of a human monoclonal antibody (mAb), while retaining its epitope specificity. In order to enable studies on the biological function of IgG subclass HLA antibodies, we used recombinant technology to generate recombinant human HLA mAbs from established heterohybridomas. We generated all four IgG subclasses of a human HLA class I and class II mAb and showed that the different subclasses had a comparable affinity, normal human Fc glycosylation, and retained HLA epitope specificity. For both mAbs, the IgG1 and IgG3 isotypes were capable of binding complement component 3d (C3d) and efficient in complement-dependent cell lysis against their specific targets, while the IgG2 and IgG4 subclasses were not able to induce cytotoxicity. Considering the fact that the antibody-binding site and properties remained unaffected, these IgG subclass HLA mAbs are excellent tools to study the function of individual IgG subclass HLA class I and class II-specific antibodies in a controlled fashion.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Epitopos/imunologia , Antígenos HLA/imunologia , Imunoglobulina G/imunologia , Isoanticorpos/imunologia , Doadores de Tecidos/estatística & dados numéricos , Humanos , Imunoglobulina G/classificação , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA