Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 52(26): 9090-9096, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37338004

RESUMO

The tandem isomerization-hydrosilylation reaction is a highly valuable process able to transform mixtures of internal olefins into linear silanes. Unsaturated and cationic hydrido-silyl-Rh(III) complexes have proven to be effective catalysts for this reaction. Herein, three silicon-based bidentate ligands, 8-(dimethylsilyl)quinoline (L1), 8-(dimethylsilyl)-2-methylquinoline (L2) and 4-(dimethylsilyl)-9-phenylacridine (L3), have been used to synthesize three neutral [RhCl(H)(L)PPh3] (1-L1, 1-L2 and 1-L3) and three cationic [Rh(H)(L)(PPh3)2][BArF4] (2-L1, 2-L2 and 2-L3) Rh(III) complexes. Among the neutral compounds, 1-L2 could be characterized in the solid state by X-ray diffraction showing a distorted trigonal bipyramidal structure. Neutral complexes (1-L1, 1-L2 and 1-L3) failed to catalyze the hydrosilylation of olefins. On the other hand, the cationic compound 2-L2 was also characterized by X-ray diffraction showing a square pyramidal structure. The unsaturated and cationic Rh(III) complexes 2-L1, 2-L2 and 2-L3 showed significant catalytic activity in the hydrosilylation of remote alkenes, with the most sterically hindered (2-L2) being the most active one.

2.
Inorg Chem ; 62(7): 3095-3105, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36757389

RESUMO

Siloxanes and silanols containing Si-H units are important building blocks for the synthesis of functionalized siloxane materials, and their synthesis is a current challenge. Herein, we report the selective synthesis of hydrosilanols, hydrosiloxanes, and silanodiols depending on the nature of the catalysts and the silane used. Two neutral ({MCl[SiMe2(o-C6H4PPh2)]2}; M = Rh, Ir) and two cationic ({M[SiMe2(o-C6H4PPh2)]2(NCMe)}[BArF4]; M = Rh, Ir) have been synthesized and their catalytic behavior toward hydrolysis of secondary silanes has been described. Using the iridium complexes as precatalysts and diphenylsilane as a substrate, the product obtained is diphenylsilanediol. When rhodium complexes are used as precatalysts, it is possible to selectively obtain silanediol, hydrosilanol, and hydrosiloxane depending on the catalysts (neutral or cationic) and the silane substituents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA