Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Med ; 2(9): 1027-1049, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617072

RESUMO

BACKGROUND: Lactobacillus was described as a keystone bacterial taxon in the human vagina over 100 years ago. Using metagenomics, we and others have characterized lactobacilli and other vaginal taxa across health and disease states, including pregnancy. While shifts in community membership have been resolved at the genus/species level, strain dynamics remain poorly characterized. METHODS: We performed a metagenomic analysis of the complex ecology of the vaginal econiche during and after pregnancy in a large U.S. based longitudinal cohort of women who were initially sampled in the third trimester of pregnancy, then validated key findings in a second cohort of women initially sampled in the second trimester of pregnancy. FINDINGS: First, we resolved microbial species and strains, interrogated their co-occurrence patterns, and probed the relationship between keystone species and preterm birth outcomes. Second, to determine the role of human heredity in shaping vaginal microbial ecology in relation to preterm birth, we performed a mtDNA-bacterial species association analysis. Finally, we explored the clinical utility of metagenomics in detection and co-occurrence patterns for the pathobiont Group B Streptococcus (causative bacterium of invasive neonatal sepsis). CONCLUSIONS: Our highly refined resolutions of the vaginal ecology during and post-pregnancy provide insights into not only structural and functional community dynamics, but highlight the capacity of metagenomics to reveal finer aspects of the vaginal microbial ecologic framework. FUNDING: NIH-NINR R01NR014792, NIH-NICHD R01HD091731, NIH National Children's Study Formative Research, Burroughs Wellcome Fund Preterm Birth Initiative, March of Dimes Preterm Birth Research Initiative, NIH-NIGMS (K12GM084897, T32GM007330, T32GM088129).


Assuntos
Microbiota , Nascimento Prematuro , Bactérias , Criança , Feminino , Humanos , Recém-Nascido , Lactobacillus/genética , Microbiota/genética , Período Pós-Parto , Gravidez , Nascimento Prematuro/microbiologia , RNA Ribossômico 16S/genética , Vagina/química
2.
Am J Primatol ; 81(10-11): e22980, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31066111

RESUMO

Previously we have shown that the Japanese macaque gut microbiome differs not by obesity per se, but rather in association with high-fat diet (HFD) feeding. This held true for both pregnant dams, as well as their 1-year-old offspring, even when weaned onto a control diet. Here we aimed to examine the stability of the gut microbiome over time and in response to maternal and postweaning HFD feeding from 6 months of age, and at 1 and 3 years of age. In both cross-sectional and longitudinal specimens, we performed analysis of the V4 hypervariable region of the 16S rRNA gene on anus swabs collected from pregnant dams and their juveniles at age 6 months to 3 years (n = 55). Extracted microbial DNA was subjected to 16S-amplicon-based metagenomic sequencing on the Illumina MiSeq platform. We initially identified 272 unique bacterial genera, and multidimensional scaling revealed samples to cluster by age and diet exposures. Dirichlet multinomial mixture modeling of microbiota abundances enabled identification of two predominant enterotypes to which samples sorted, characterized primarily by Treponema abundance, or lack thereof. Approximating the time of initial weaning (6 months), the Japanese macaque offspring microbiome underwent a significant state type transition which stabilized from 1 to 3 years of age. However, we also found the low abundance Treponema enterotype to be strongly associated with HFD exposure, be it during gestation/lactation or in the postweaning interval. Examination of taxonomic co-occurrences revealed samples within the low Treponema cluster were relatively permissive (allowing for increased interactions between microbiota) whereas samples within the high Treponema cluster were relatively exclusionary (suggesting decreased interactions amongst microbiota). Taken together, these findings suggest that Treponemes are keystone species in the developing gut microbiome of the gut, and susceptible to HFD feeding in their relative abundance.


Assuntos
Dieta/veterinária , Microbioma Gastrointestinal , Macaca fuscata/microbiologia , Fatores Etários , Animais , Bactérias/classificação , Dieta Hiperlipídica/veterinária , Feminino , Genoma Bacteriano , Estudos Longitudinais , Macaca fuscata/crescimento & desenvolvimento , Gravidez , RNA Ribossômico 16S/genética , Treponema , Desmame
3.
BMC Microbiol ; 18(1): 28, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621980

RESUMO

BACKGROUND: We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). Here, we aimed to further these studies by examining alterations in the gut microbiome of juvenile Japanese macaques (Macaca fuscata) that were exposed to a maternal HFD, weaned onto a control diet, and later supplemented with a synbiotic comprised of psyllium seed and Enterococcus and Lactobacillus species. RESULTS: Eighteen month old offspring (n = 7) of 36% HFD fed dams were fed a control (14% fat) diet post weaning, then were synbiotic supplemented for 75 days and longitudinal stool and serum samples were obtained. All stool samples were subjected to 16S rRNA metagenomic sequencing, and microbiome profiles and serum lipids and triglycerides were compared to untreated, healthy age matched and diet matched controls (n = 7). Overall, 16S-based metagenomic analysis revealed that supplementation exerted minimal alterations to the gut microbiome including transient increased abundance of Lactobacillus species and decreased abundance of few bacterial genera, including Faecalibacterium and Anaerovibrio. However, serum lipid analysis revealed significant decreases in triglycerides, cholesterol, and LDL (p < 0.05). Nevertheless, supplemented juveniles challenged 4 months later were not protected from HFD-induced gut dysbiosis. CONCLUSIONS: Synbiotic supplementation is temporally associated with alterations in the gut microbiome and host lipid profiles of juvenile Japanese macaques that were previously exposed to a maternal HFD. Despite these presumptive temporal benefits, a protective effect against later HFD-challenge gut dysbiosis was not observed.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal/fisiologia , Primatas/microbiologia , Simbióticos , Animais , Bactérias/genética , Disbiose/microbiologia , Enterococcus/fisiologia , Faecalibacterium , Fezes/microbiologia , Feminino , Firmicutes , Microbioma Gastrointestinal/genética , Lactobacillus/fisiologia , Lipídeos/sangue , Macaca/microbiologia , Masculino , Redes e Vias Metabólicas , Metagenômica , Probióticos , Psyllium , RNA Ribossômico 16S/genética , Especificidade da Espécie , Triglicerídeos/sangue
4.
Nat Med ; 23(3): 314-326, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112736

RESUMO

Human microbial communities are characterized by their taxonomic, metagenomic and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to determine the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites and assess the effect of the mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early third trimester (n = 81) were prospectively enrolled for longitudinal sampling through 6 weeks after delivery, and a second matched cross-sectional cohort (n = 81) was additionally recruited for sampling once at the time of delivery. Samples across multiple body sites, including stool, oral gingiva, nares, skin and vagina were collected for each maternal-infant dyad. Whole-genome shotgun sequencing and sequencing analysis of the gene encoding the 16S rRNA were performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogeneous across all body sites at delivery, with the notable exception of the neonatal meconium. However, by 6 weeks after delivery, the infant microbiota structure and function had substantially expanded and diversified, with the body site serving as the primary determinant of the composition of the bacterial community and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with the cesarean mode of delivery in some body sites (oral gingiva, nares and skin; R2 = 0.038), this was not true for neonatal stool (meconium; Mann-Whitney P > 0.05), and there was no observable difference in community function regardless of delivery mode. For infants at 6 weeks of age, the microbiota structure and function had expanded and diversified with demonstrable body site specificity (P < 0.001, R2 = 0.189) but without discernable differences in community structure or function between infants delivered vaginally or by cesarean surgery (P = 0.057, R2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes substantial reorganization, which is primarily driven by body site and not by mode of delivery.


Assuntos
Cesárea , Parto Obstétrico , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Adulto , Estudos Transversais , Feminino , Gengiva/microbiologia , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Mecônio/microbiologia , Metagenômica , Mucosa Nasal/microbiologia , Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Pele/microbiologia , Adulto Jovem
5.
Gut Microbes ; 7(6): 459-470, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27686144

RESUMO

Evidence supporting the Developmental Origins of Health and Disease Hypothesis indicates that maternal nutrition in pregnancy has a significant impact on offspring disease risk later in life, likely by modulating developmental processes in utero. Gut microbiota have recently been explored as a potential mediating factor, as dietary components strongly influence microbiota abundance, function and its impact on host physiology. A growing body of evidence has additionally indicated that the intrauterine environment is not sterile as once presumed, indicating that maternal-fetal transmission of microbiota may occur during pregnancy. In this article, we will review the body of literature that supports this emerging hypothesis, as well as highlight the work in relevant animal models demonstrating associations with maternal gestational nutrition and the offspring gut microbiome that may influence offspring physiology and susceptibility to disease.


Assuntos
Desenvolvimento Fetal , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Materna , Animais , Feminino , Humanos , Lactação , Masculino , Troca Materno-Fetal , Gravidez
6.
Genome Med ; 8(1): 77, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503374

RESUMO

BACKGROUND: Emerging evidence suggests that the in utero environment is not sterile as once presumed. Work in the mouse demonstrated transmission of commensal bacteria from mother to fetus during gestation, though it is unclear what modulates this process. We have previously shown in the nonhuman primate that, independent of obesity, a maternal high-fat diet during gestation and lactation persistently shapes the juvenile gut microbiome. We therefore sought to interrogate in a population-based human longitudinal cohort whether a maternal high-fat diet similarly alters the neonatal and infant gut microbiome in early life. METHODS: A representative cohort was prospectively enrolled either in the early third trimester or intrapartum (n = 163), with a subset consented to longitudinal sampling through the postpartum interval (n = 81). Multiple body site samples, including stool and meconium, were collected from neonates at delivery and by 6 weeks of age. A rapid dietary questionnaire was administered to estimate intake of fat, added sugars, and fiber over the past month (National Health and Examination Survey). DNA was extracted from each infant meconium/stool sample (MoBio) and subjected to 16S rRNA gene sequencing and analysis. RESULTS: On average, the maternal dietary intake of fat ranged from 14.0 to 55.2 %, with an average intake of 33.1 % (σ = 6.1 %). Mothers whose diets significantly differed from the mean (±1 standard deviation) were separated into two distinct groups, a control group (n = 13, µ = 24.4 %) and a high-fat group (n = 13, µ = 43.1 %). Principal coordinate analysis revealed that the microbiome of the neonatal stool at birth (meconium) clustered differently by virtue of maternal gestational diet (PERMANOVA p = 0.001). LEfSe feature selection identified several taxa that discriminated the groups, with a notable relative depletion of Bacteroides in the neonates exposed to a maternal high-fat gestational diet (Student's t-test, p < 0.05) that persisted to 6 weeks of age. CONCLUSIONS: Similar to the primate, independent of maternal body mass index, a maternal high-fat diet is associated with distinct changes in the neonatal gut microbiome at birth which persist through 4-6 weeks of age. Our findings underscore the importance of counseling pregnant mothers on macronutrient consumption during pregnancy and lactation.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Mecônio/microbiologia , RNA Ribossômico 16S/genética , Feminino , Microbioma Gastrointestinal/genética , Humanos , Lactente , Recém-Nascido , Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Inquéritos e Questionários
7.
Am J Obstet Gynecol ; 214(5): 627.e1-627.e16, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26965447

RESUMO

BACKGROUND: Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality and is not uncommonly associated with chorioamnionitis. We recently have demonstrated that the placenta harbors a unique microbiome with similar flora to the oral community. We also have shown an association of these placental microbiota with PTB, history of antenatal infection, and excess maternal weight gain. On the basis of these previous observations, we hypothesized that the placental membranes would retain a microbiome community that would vary in association with preterm birth and chorioamnionitis. OBJECTIVE: In the current study, we aimed to examine the differences in the placental membrane microbiome in association with PTB in both the presence and absence of chorioamnionitis and/or funisitis using state-of-the-science whole-genome shotgun metagenomics. STUDY DESIGN: This was a cross-sectional analysis with 6 nested spontaneous birth cohorts (n = 9-15 subjects/cohort): Term gestations without chorioamnionitis, term with chorioamnionitis, preterm without chorioamnionitis, preterm with mild chorioamnionitis, preterm with severe chorioamnionitis, and preterm with chorioamnionitis and funisitis. Histologic analysis was performed with Redline's criteria, and inflammatory cytokines were analyzed in the cord blood. DNA from placental membranes was extracted from sterile swabs collected at delivery, and whole-genome shotgun sequencing was performed on the Illumina HiSeq platform. Filtered microbial DNA sequences were annotated and analyzed with MG-RAST (ie, Metagenomic Rapid Annotations using Subsystems Technology) and R. RESULTS: Subjects were assigned to cohorts on the basis of gestational age at delivery and independent scoring of histologic chorioamnionitis. We found that preterm subjects with severe chorioamnionitis and funisitis had increases in cord blood inflammatory cytokines. Of interest, although the placental membrane microbiome was altered in association with severity of histologic chorioamnionitis (permutational multivariate analysis of variance P = .005), there was no observable impact with either betamethasone or antibiotic treatment. In preterm subjects with chorioamnionitis, we found a high abundance of both urogenital and oral commensal bacteria. These alterations in the microbiome were accompanied by significant variation (P < .05) in microbial metabolic pathways important in the glucose-fed pentose phosphate pathway (term subjects), or glycerophopholipid metabolism, and the biosynthesis of the siderophore group nonribosomal peptides (preterm subjects). CONCLUSION: Consistent with ours and others previous findings, women who experienced spontaneous PTB harbor placental microbiota that further differed by severity of chorioamnionitis. Integrative metagenomic analysis revealed significant variation in distinct bacterial metabolic pathways, which we speculate may contribute to risk of preterm birth with and without severe chorioamnionitis.


Assuntos
Corioamnionite/microbiologia , Microbiota , Placenta/microbiologia , Nascimento Prematuro , Butiratos/metabolismo , Estudos Transversais , DNA Bacteriano/genética , Feminino , Glicerofosfolipídeos/metabolismo , Humanos , Metagenômica , Via de Pentose Fosfato , Gravidez , Riboflavina/metabolismo , Análise de Sequência de DNA , Índice de Gravidade de Doença , Nascimento a Termo
8.
Artigo em Inglês | MEDLINE | ID: mdl-25775922

RESUMO

The human microbiome, the collective genome of the microbial community that is on and within us, has recently been mapped. The initial characterization of healthy subjects has provided investigators with a reference population for interrogating the microbiome in metabolic, intestinal, and reproductive health and disease states. Although it is known that bacteria can colonize the vagina, recent metagenomic studies have shown that the vaginal microbiome varies among reproductive age women. Similarly, the richness and diversity of intestinal microbiota also naturally fluctuate among gravidae in both human and nonhuman primates, as well as mice. Moreover, recent evidence suggests that microbiome niches in pregnancy are not limited to maternal body sites, as the placenta appears to harbor a low biomass microbiome that is presumptively established in early pregnancy and varies in association with a remote history of maternal antenatal infection as well as preterm birth. In this article, we will provide a brief overview on metagenomics science as a means to investigate the microbiome, observations pertaining to both variation and the presumptive potential role of a varied microbiome during pregnancy, and how future studies of the microbiome in pregnancy may lend to a better understanding of human biology, reproductive health, and parturition.


Assuntos
Metagenômica/métodos , Microbiota/fisiologia , Complicações Infecciosas na Gravidez/microbiologia , Vagina/microbiologia , Animais , DNA Bacteriano/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Camundongos , Microbiota/genética , Placenta/microbiologia , Gravidez , Saúde Reprodutiva
9.
J Immunol ; 193(2): 688-99, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943215

RESUMO

T cell development in the thymus produces multiple lineages of cells, including innate T cells such as γδ TCR(+) cells, invariant NKT cells, mucosal-associated invariant T cells, and H2-M3-specific cells. Although innate cells are generally a minor subset of thymocytes, in several strains of mice harboring mutations in T cell signaling proteins or transcriptional regulators, conventional CD8(+) T cells develop as innate cells with characteristics of memory T cells. Thus, in Itk-deficient mice, mature CD4(-)CD8(+) (CD8 single-positive [SP]) thymocytes express high levels of the transcription factor eomesodermin (Eomes) and are dependent on IL-4 being produced in the thymic environment by a poorly characterized subset of CD4(+) thymocytes expressing the transcriptional regulator promyelocytic leukemia zinc finger. In this study, we show that a sizeable proportion of mature CD4(+)CD8(-) (CD4SP) thymocytes in itk(-/-) mice also develop as innate Eomes-expressing T cells. These cells are dependent on MHC class II and IL-4 signaling for their development, indicating that they are conventional CD4(+) T cells that have been converted to an innate phenotype. Surprisingly, neither CD4SP nor CD8SP innate Eomes(+) thymocytes in itk(-/-) or SLP-76(Y145F) mice are dependent on γδ T cells for their development. Instead, we find that the predominant population of Eomes(+) innate itk(-/-) CD4SP thymocytes is largely absent in mice lacking CD1d-specific invariant NKT cells, with no effect on innate itk(-/-) CD8SP thymocytes. In contrast, both subsets of innate Eomes(+)itk(-/-) T cells require the presence of a novel promyelocytic leukemia zinc finger-expressing, SLAM family receptor adapter protein-dependent thymocyte population that is essential for the conversion of conventional CD4(+) and CD8(+) T cells into innate T cells with a memory phenotype.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas Tirosina Quinases/imunologia , Transdução de Sinais/imunologia , Animais , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células , Citometria de Fluxo , Interleucina-15/deficiência , Interleucina-15/genética , Interleucina-15/imunologia , Interleucina-4/imunologia , Interleucina-4/metabolismo , Fatores de Transcrição Kruppel-Like/imunologia , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Ratos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais/genética , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo
10.
J Immunol ; 193(2): 673-87, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928994

RESUMO

T cell development in the thymus produces multiple lineages of cells, including innate T cells. Studies in mice harboring alterations in TCR signaling proteins or transcriptional regulators have revealed an expanded population of CD4(+) innate T cells in the thymus that produce IL-4 and express the transcription factor promyelocytic leukemia zinc finger (PLZF). In these mice, IL-4 produced by the CD4(+)PLZF(+) T cell population leads to the conversion of conventional CD8(+) thymocytes into innate CD8(+) T cells resembling memory T cells expressing eomesodermin. The expression of PLZF, the signature invariant NKT cell transcription factor, in these innate CD4(+) T cells suggests that they might be a subset of αß or γδ TCR(+) NKT cells or mucosal-associated invariant T (MAIT) cells. To address these possibilities, we characterized the CD4(+)PLZF(+) innate T cells in itk(-/-) mice. We show that itk(-/-) innate PLZF(+)CD4(+) T cells are not CD1d-dependent NKT cells, MR1-dependent MAIT cells, or γδ T cells. Furthermore, although the itk(-/-) innate PLZF(+)CD4(+) T cells express αß TCRs, neither ß2-microglobulin-dependent MHC class I nor any MHC class II molecules are required for their development. In contrast to invariant NKT cells and MAIT cells, this population has a highly diverse TCRα-chain repertoire. Analysis of peripheral tissues indicates that itk(-/-) innate PLZF(+)CD4(+) T cells preferentially home to spleen and mesenteric lymph nodes owing to increased expression of gut-homing receptors, and that their expansion is regulated by commensal gut flora. These data support the conclusion that itk(-/-) innate PLZF(+)CD4(+) T cells are a novel subset of innate T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Fatores de Transcrição Kruppel-Like/imunologia , Proteínas Tirosina Quinases/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Citometria de Fluxo , Expressão Gênica/imunologia , Antígenos H-2/genética , Antígenos H-2/imunologia , Antígenos H-2/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Microglobulina beta-2/imunologia , Microglobulina beta-2/metabolismo
11.
Nat Commun ; 5: 3889, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24846660

RESUMO

The intestinal microbiome is a unique ecosystem and an essential mediator of metabolism and obesity in mammals. However, studies investigating the impact of the diet on the establishment of the gut microbiome early in life are generally lacking, and most notably so in primate models. Here we report that a high-fat maternal or postnatal diet, but not obesity per se, structures the offspring's intestinal microbiome in Macaca fuscata (Japanese macaque). The resultant microbial dysbiosis is only partially corrected by a low-fat, control diet after weaning. Unexpectedly, early exposure to a high-fat diet diminished the abundance of non-pathogenic Campylobacter in the juvenile gut, suggesting a potential role for dietary fat in shaping commensal microbial communities in primates. Our data challenge the concept of an obesity-causing gut microbiome and rather provide evidence for a contribution of the maternal diet in establishing the microbiota, which in turn affects intestinal maintenance of metabolic health.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Intestinos/microbiologia , Microbiota , Efeitos Tardios da Exposição Pré-Natal/etiologia , Animais , Dieta com Restrição de Gorduras , Disbiose/microbiologia , Feminino , Macaca , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Desmame
12.
J Reprod Immunol ; 104-105: 12-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24793619

RESUMO

The causes of preterm birth are multifactorial, but its association with infection has been well-established. The predominant paradigm describes an ascending infection from the lower genital tract through the cervix and into the presumably sterile fetal membranes and placenta. Thus, an evaluation of the role of the vaginal microbiome in preterm birth is implicated. However, emerging fields of data described in this review suggest that the placenta might not be sterile, even in the absence of clinical infection. We thus propose an additional mechanism for placental colonization and infection: hematogenous spread. When considered in the context of decades of evidence demonstrating a strong risk of recurrence for preterm birth, studies on parturition are ideal for applying the rapidly expanding field of metagenomics and analytic pipelines. The translational implications toward identification of innovative treatments for the prevention of preterm birth are further discussed. In sum, exciting advances in understanding the role of both host and microbiota in parturition and preterm birth are on the horizon.


Assuntos
Microbiota/imunologia , Parto/imunologia , Complicações Infecciosas na Gravidez , Nascimento Prematuro , Infecções do Sistema Genital/imunologia , Animais , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/microbiologia , Nascimento Prematuro/imunologia , Nascimento Prematuro/microbiologia
13.
J Immunol ; 192(12): 5881-93, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835398

RESUMO

In response to acute virus infections, CD8(+) T cells differentiate to form a large population of short-lived effectors and a stable pool of long-lived memory cells. The characteristics of the CD8(+) T cell response are influenced by TCR affinity, Ag dose, and the inflammatory cytokine milieu dictated by the infection. To address the mechanism by which differences in TCR signal strength could regulate CD8(+) T cell differentiation, we investigated the transcription factor, IFN regulatory factor 4 (IRF4). We show that IRF4 is transiently upregulated to differing levels in murine CD8(+) T cells, based on the strength of TCR signaling. In turn, IRF4 controls the magnitude of the CD8(+) T cell response to acute virus infection in a dose-dependent manner. Modest differences in IRF4 expression dramatically influence the numbers of short-lived effector cells at the peak of the infection, but have no impact on the kinetics of the infection or on the rate of T cell contraction. Furthermore, the expression of key transcription factors such as T cell factor 1 and Eomesodermin are highly sensitive to graded levels of IRF4. In contrast, T-bet expression is less dependent on IRF4 levels and is influenced by the nature of the infection. These data indicate that IRF4 is a key component that translates the strength of TCR signaling into a graded response of virus-specific CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Vírus da Influenza A/imunologia , Fatores Reguladores de Interferon/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Infecções por Orthomyxoviridae/imunologia , Doença Aguda , Animais , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Vírus da Influenza A/genética , Fatores Reguladores de Interferon/genética , Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia
14.
Semin Reprod Med ; 32(1): 14-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24390916

RESUMO

Dysbiosis of the microbiome has been associated with type II diabetes mellitus, obesity, inflammatory bowel disorders, and colorectal cancer, and recently, the Human Microbiome Project Consortium has helped to define a healthy microbiome. Now research has begun to investigate how the microbiome is established, and in this article, we will discuss the maternal influences on the establishment of the microbiome. The inoculation of an individual's microbiome is highly dependent on the maternal microbiome, and changes occur in the maternal microbiome during pregnancy that may help to shape the neonatal microbiome. Further, we consider how mode of delivery may shape the developing microbiome of a neonate, and we end by discussing how the microbiome may impact preterm birth and the possibility of bacterial colonization of the placenta. Although the current literature demonstrates that the transformation of the maternal microbiome during pregnancy effects the establishment of the neonatal microbiome, further research is needed to explore how the microbiome shapes our metabolism and developing immune system.


Assuntos
Desenvolvimento Infantil/fisiologia , Microbiota/fisiologia , Mães , Feminino , Humanos , Recém-Nascido , Placenta/microbiologia , Gravidez , Nascimento Prematuro
15.
J Immunol ; 190(6): 2659-69, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23378428

RESUMO

The Tec family tyrosine kinase, Itk, regulates signaling downstream of the TCR. The absence of Itk in CD4(+) T cells results in impaired Th2 responses along with defects in maturation, cytokine production, and survival of iNKT cells. Paradoxically, Itk(-/-) mice have spontaneously elevated serum IgE levels, resulting from an expansion of the Vγ1.1(+)Vδ6.3(+) subset of γδ T cells, known as γδ NKT cells. Comparisons between γδ NKT cells and αß iNKT cells showed convergence in the pattern of cell surface marker expression, cytokine profiles, and gene expression, suggesting that these two subsets of NKT cells undergo similar differentiation programs. Hepatic γδ NKT cells have an invariant TCR and are derived predominantly from fetal progenitors that expand in the thymus during the first weeks of life. The adult thymus contains these invariant γδ NKT cells plus a heterogeneous population of Vγ1.1(+)Vδ6.3(+) T cells with diverse CDR3 sequences. This latter population, normally excluded from the liver, escapes the thymus and homes to the liver when Itk is absent. In addition, Itk(-/-) γδ NKT cells persistently express high levels of Zbtb16 (PLZF) and Il4, genes that are normally downregulated in the most mature subsets of NKT cells. These data indicate that Itk signaling is required to prevent the expansion of γδ NKT cells in the adult thymus, to block their emigration, and to promote terminal NKT cell maturation.


Assuntos
Diferenciação Celular/imunologia , Senescência Celular/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Proteínas Tirosina Quinases/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Timo/enzimologia , Timo/imunologia , Animais , Inibição de Migração Celular/imunologia , Movimento Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Timo/citologia
16.
J Immunol ; 185(3): 1419-28, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20592282

RESUMO

Nonvirus-specific bystander CD8 T cells bathe in an inflammatory environment during viral infections. To determine whether bystander CD8 T cells are affected by these environments, we examined P14, HY, and OT-I TCR transgenic CD8 T cells sensitized in vivo by IFN-alphabeta-inducing viral infections or by polyinosinic:polycytidylic acid. These sensitized cells rapidly exerted effector functions, such as IFN-gamma production and degranulation, on contact with their high-affinity cognate Ag. Sensitization required self-MHC I and indirect effects of IFN-alphabeta, which together upregulated the T-box transcription factor Eomesodermin, potentially enabling the T cells to rapidly transcribe CTL effector genes and behave like memory cells rather than naive T cells. IL-12, IL-15, IL-18, and IFN-gamma were not individually required for sensitization to produce IFN-gamma, but IL-15 was required for upregulation of granzyme B. These experiments indicate that naive CD8 T cells receive signals from self-MHC and IFN-alphabeta and that, by this process, CD8 T cell responses to viral infection can undergo distinct differentiation pathways, depending on the timing of Ag encounter during the virus-induced IFN response.


Assuntos
Autoantígenos/fisiologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Interferon-alfa/fisiologia , Interferon beta/fisiologia , Transdução de Sinais/imunologia , Animais , Infecções por Arenaviridae/imunologia , Efeito Espectador/imunologia , Linfócitos T CD8-Positivos/virologia , Feminino , Antígeno H-Y/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vírus Pichinde/imunologia , Fase de Repouso do Ciclo Celular/imunologia , Regulação para Cima/imunologia
17.
Immunol Rev ; 228(1): 115-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19290924

RESUMO

Tec family kinases are important components of antigen receptor signaling pathways in B cells, T cells, and mast cells. In T cells, three members of this family, inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk), and Tec, are expressed. In the absence of Itk and Rlk, T-cell receptor signaling is impaired, with defects in mitogen-activated protein kinase activation, Ca(2+) mobilization, and actin polymerization. During T-cell development in the thymus, no role has been found for these kinases in the CD4(+) versus CD8(+) T-cell lineage decision; however, several studies indicate that Itk and Rlk contribute to the signaling leading to positive and negative selection. In addition, we and others have recently described an important role for Itk and Rlk in the development of conventional as opposed to innate CD4(+) and CD8(+) T cells. Natural killer T and gammadelta T-cell populations are also altered in Itk- and Rlk/Itk-deficient mice. These findings strongly suggest that the strength of T-cell receptor signaling during development determines whether T cells mature into conventional versus innate lymphocyte lineages. This lineage decision is also influenced by signaling via signaling lymphocytic activation molecule (SLAM) family receptors. Here we discuss these two signaling pathways that each contribute to conventional versus innate T-cell lineage commitment.


Assuntos
Proteínas Tirosina Quinases/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Humanos , Transdução de Sinais , Timo/citologia , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA