Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 6(26): eaba8137, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32637618

RESUMO

Ice-nucleating particles (INPs) have the potential to remove much of the liquid water in climatically important mid- to high-latitude shallow supercooled clouds, markedly reducing their albedo. The INP sources at these latitudes are very poorly defined, but it is known that there are substantial dust sources across the high latitudes, such as Iceland. Here, we show that Icelandic dust emissions are sporadically an important source of INPs at mid to high latitudes by combining ice-nucleating active site density measurements of aircraft-collected Icelandic dust samples with a global aerosol model. Because Iceland is only one of many high-latitude dust sources, we anticipate that the combined effect of all these sources may strongly contribute to the INP population in the mid- and high-latitude northern hemisphere. This is important because these emissions are directly relevant for the cloud-phase climate feedback and because high-latitude dust emissions are expected to increase in a warmer climate.

2.
Nat Commun ; 9(1): 3182, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093678

RESUMO

Uncertainty in pre-industrial natural aerosol emissions is a major component of the overall uncertainty in the radiative forcing of climate. Improved characterisation of natural emissions and their radiative effects can therefore increase the accuracy of global climate model projections. Here we show that revised assumptions about pre-industrial fire activity result in significantly increased aerosol concentrations in the pre-industrial atmosphere. Revised global model simulations predict a 35% reduction in the calculated global mean cloud albedo forcing over the Industrial Era (1750-2000 CE) compared to estimates using emissions data from the Sixth Coupled Model Intercomparison Project. An estimated upper limit to pre-industrial fire emissions results in a much greater (91%) reduction in forcing. When compared to 26 other uncertain parameters or inputs in our model, pre-industrial fire emissions are by far the single largest source of uncertainty in pre-industrial aerosol concentrations, and hence in our understanding of the magnitude of the historical radiative forcing due to anthropogenic aerosol emissions.

3.
Nature ; 503(7474): 67-71, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24201280

RESUMO

The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.


Assuntos
Aerossóis/análise , Clima , Modelos Teóricos , Incerteza , Efeito Estufa , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história , Sulfetos/análise , Dióxido de Enxofre/análise , Erupções Vulcânicas/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA