RESUMO
We present and discuss the performance of 1H electron-nuclear double resonance (ENDOR) at 263â¯GHz/9.4â¯T by employing a prototype, commercial quasi optical spectrometer. Basic instrumental features of the setup are described alongside a comprehensive characterization of the new ENDOR probe head design. The performance of three different ENDOR pulse sequences (Davies, Mims and CP-ENDOR) is evaluated using the 1H BDPA radical. A key feature of 263â¯GHz spectroscopy - the increase in orientation selectivity in comparison with 94â¯GHz experiments - is discussed in detail. For this purpose, the resolution of 1H ENDOR spectra at 263â¯GHz is verified using a representative protein sample containing approximately 15 picomoles of a tyrosyl radical. Davies ENDOR spectra recorded at 5â¯K reveal previously obscured spectral features, which are interpreted by spectral simulations aided by DFT calculations. Our analysis shows that seven internal proton couplings are detectable for this specific radical if sufficient orientation selectivity is achieved. The results prove the fidelity of 263â¯GHz experiments in reporting orientation-selected 1H ENDOR spectra and demonstrate that new significant information can be uncovered in complex molecular systems, owing to the enhanced resolution combined with high absolute sensitivity and no compromise in acquisition time.
RESUMO
A disk-shaped [Fe(III) 7 (Cl)(MeOH)6 (µ3 -O)3 (µ-OMe)6 (PhCO2 )6 ]Cl2 complex with C3 symmetry has been synthesised and characterised. The central tetrahedral Fe(III) is 0.733â Å above the almost co-planar Fe(III) 6 wheel, to which it is connected through three µ3 -oxide bridges. For this iron-oxo core, the magnetic susceptibility analysis proposed a Heisenberg-Dirac-vanâ Vleck (HDvV) mechanism that leads to an intermediate spin ground state of S=7/2 or 9/2. Within either of these ground state manifolds it is reasonable to expect spin frustration effects. The (57) Fe Mössbauer (MS) analysis verifies that the central Fe(III) ion easily aligns its magnetic moment antiparallel to the externally applied field direction, whereas the other six peripheral Fe(III) ions keep their moments almost perpendicular to the field at stronger fields. This unusual canted spin structure reflects spin frustration. The small linewidths in the magnetic Mössbauer spectra of polycrystalline samples clearly suggest an isotropic exchange mechanism for realisation of this peculiar spin topology.
RESUMO
The synthesis and characterization of a novel dinucleating ligand L (L=4,11-dimethyl-1,8-bis{2-[N-(di-2-pyridylmethyl)amino]ethyl}cyclam) and its µ-oxo-bridged diferric complex [(H(2)L){Fe(III)(2)(O)}(Cl)(4)](2+) are reported. This diiron(III) complex is the first example of a truly functional purple acid phosphatase (PAP) mimic as it accelerates the hydrolysis of the activated phosphomonoester 2,4-dinitrophenyl phosphate (DNPP). The spectroscopic and kinetic data indicate that only substrates that are monodentately bound to one of the two ferric ions can be attacked by a suitable nucleophile. This is, most probably, a terminal iron(III)-bound hydroxide. DFT calculations support this assumption and also highlight the importance of secondary interactions, exerted by the protonated cyclam platform, for the positioning and activation of the iron(III)-bound substrate. Similar effects are postulated in the native enzyme but addressed in PAP mimics for the first time.