Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 260: 119587, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38992755

RESUMO

This study examines catalytic ability of various zeolite materials in converting discarded tire pyrolyzed oil by employing a moderate sized pyrolysis plant of a 10 L working volume. The study revealed that the yield of liquid fractions using γ-Al2O3 was greater than that of HZSM-5 and HY, while the yield of condensates were limited in the absence of catalyst. The tire waste pyrolysis oil catalytcially enhanced by alumina catalyst analyzed using Fourier transform infrared spectroscopy exhibited the stretching bands corresponding to aromatic and non-aromatic compounds. The GC MS analysis revealed that the cyclic unsaturated fragment percentages in liquids were decreased by the catalysts to 53.9% with HY, 59.0% with γ-Al2O3, and 62.2% with HZSM-5, which in turn was converted into aromatic chemicals. Nitrogen adsorption desorption analysis revealed that γ-Al2O3 has an enhanced surface area of 635 m2/g which improved its catalytic performance. The cracked liquid oil had viscosity (10.36 cSt), values of pour and flash temperatures of -2.2 °C and 41 °C respectively, analogous to petroleum diesel. The upgraded pyrolysis oil (10%) is blended with gasoline (90%), and emission analysis was performed. Moreover, liquid oil needs post treatment (refining) for its use as energy source in transportation application. The novelty of this research is in its comparative analysis of multiple catalysts under controlled conditions using a small pilot-scale pyrolysis reactor, which provides insights into optimizing the pyrolysis process for industrial applications.


Assuntos
Óxido de Alumínio , Pirólise , Zeolitas , Zeolitas/química , Óxido de Alumínio/química , Catálise , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Environ Res ; 258: 119474, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38914253

RESUMO

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.


Assuntos
Biocombustíveis , Jatropha , Micro-Ondas , Óleos de Plantas , Biocombustíveis/análise , Jatropha/química , Óleos de Plantas/química , Catálise , Zeolitas/química , Difração de Raios X , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA