Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1107128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396909

RESUMO

Background: Mutant KRAS-induced tumorigenesis is prevalent in lung, colon, and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants seem undruggable due to their high-affinity GTP-binding pocket and smooth surface. Structure-based drug design helped in the design and development of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then approved by the FDA. Recent reports state that AMG 510 is becoming resistant in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and lung adenocarcinoma patients, and the crucial drivers involved in this resistance mechanism are unknown. Methods: In recent years, RNA-sequencing (RNA-seq) data analysis has become a functional tool for profiling gene expression. The present study was designed to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then subjected to differentially expressed gene (DEG) analysis using the limma package. Then the identified DEGs were subjected to protein-protein interaction (PPI) using the STRING database, followed by cluster analysis and hub gene analysis, which resulted in the identification of probable markers. Results: Furthermore, the enrichment and survival analysis revealed that the small unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG 510 resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Conclusion: Finally, we conclude that RPS3 is a crucial biomarker in sotorasib resistance which evades apoptosis by MDM2/4 interaction. We also suggest that the combinatorial treatment of sotorasib and RNA polymerase I machinery inhibitors could be a possible strategy to overcome resistance and should be studied in in vitro and in vivo settings in near future.

2.
J Biomol Struct Dyn ; 41(22): 13438-13453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36764825

RESUMO

SARS-CoV-2 is a positive-sense single-stranded RNA virus that causes a deadly coronavirus disease (COVID-19) in humans. The infection of SARS-CoV-2 in humans involves a viral surface spike glycoprotein containing the receptor-binding domain (RBD). The interactions of SARS-CoV-2 with the host angiotensin-converting enzyme 2 (ACE2) receptor are mediated by RBD. It binds to the host ACE2 and influences viral replication and disease pathogenesis. Therefore, targeting the RBD to prevent SARS-CoV-2 infections is of utmost importance. In this study, we used docking and molecular dynamics simulations to understand the binding effect of andrographolide on the SARS-CoV-2 spike protein. During docking, a strong binding affinity was observed between the ligand and the target receptor protein. MD results demonstrated higher conformational fluctuations in the ligand-free protein compared to the bound form. Several residues in the active sites make conformational rearrangements for the S protein to interact with the ligand. While RBD experiences conformational transition to gain more stability upon binding with the ligand. This binding is strengthened via several non-covalent interactions that make the complex structure more stable with higher binding affinity. Overall findings of the study may shed some valuable insights concerning the development of potential therapeutics in the strategies for COVID-19 prevention.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Enzima de Conversão de Angiotensina 2/metabolismo , Ligantes , Sítios de Ligação , Glicoproteína da Espícula de Coronavírus/química , Ligação Proteica , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA