Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 18(12): e2300312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688491

RESUMO

In recent years, versatile peroxidase (VP) has emerged as a promising enzyme for biotechnological applications, as it can oxidize lignin without the external mediators. To gain insights into the breakdown process of artificial lignin by VP, reaction between the two was studied. Degradation products were fractionated using ultrafiltration and analyzed by RP- high performance liquid chromatography with mass detection (HPLC-MS) chromatography. Four fractions were obtained based on their molecular sizes: >10, 3-10, 1-3, and <1 kDa. Interestingly, while VP did not significantly alter the yields of these fractions, the chromatograms revealed the presence of oligomers with different molecular weights (MWs) resulting from the enzymatic activity. The VP exhibits a dual role in its enzymatic activity: both degrading and synthesizing these oligomers. This was confirmed by principal component analysis (PCA). The positive correlations were found between certain oligomers (D1 and D2, D5 and D6, as well as between D7, D10, T2, and T4), suggesting their simultaneous degradation. On the other hand, a negative correlation was found between the monomer and some oligomers (D7, D10, T2, and T4), indicating the decomposition of these oligomers into monomers. These findings shed light on the intricate interplay between VP and artificial lignin, offering valuable insights for potential applications in lignin valorization.


Assuntos
Lignina , Peroxidase , Peroxidase/química , Peroxidase/metabolismo , Lignina/metabolismo , Peso Molecular , Peroxidases/metabolismo
2.
Chembiochem ; 24(20): e202300414, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37531452

RESUMO

The aim of this research was to prove the function of the putative opine dehydrogenase from Desulfohalobium retbaense and to characterize the enzyme in terms of functional and kinetic parameters. A putative opine dehydrogenase was identified from a metagenomic library by a sequence-based technique search of the metagenomic library, and afterward was successfully heterologously produced in Escherichia coli. In order to examine its potential for applications in the synthesis of secondary amines, first the substrate specificity of the enzyme towards different amino donors and amino acceptors was determined. The highest affinity was observed towards small amino acids, preferentially L-alanine, and when it comes to α-keto acids, pyruvate proved to be a preferential amino acceptor. The highest activity was observed at pH 6.5 in the absence of salts. The enzyme showed remarkable stability in a wide range of experimental conditions, such as broad pH stability (from 6.0-11.0 after 30 min incubation in buffers at a certain pH), stability in the presence of NaCl up to 3.0 M for 24 h, it retained 80 % of the initial activity after 1 h incubation at 45 °C, and 65 % of the initial activity after 24 h incubation in 30 % dimethyl sulfoxide.


Assuntos
Sais , Cloreto de Sódio , Biblioteca Gênica , Oxirredutases , Especificidade por Substrato , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768280

RESUMO

Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Gramicidina , Simulação de Acoplamento Molecular , Bases de Dados Factuais , Inibidores de Proteases/farmacologia , Antivirais/farmacologia
4.
Int J Biol Macromol ; 181: 1072-1080, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33892032

RESUMO

High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.


Assuntos
Alginatos/química , Corantes/isolamento & purificação , Dopamina/química , Lacase/química , Parede Celular/química , Streptomyces/enzimologia
5.
Plant Physiol Biochem ; 161: 176-190, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33618201

RESUMO

The UV-B represents the minor fraction of the solar spectrum, while UV-C is not contained in natural solar radiation, but both radiation types can cause damaging effects in plants. Cell walls (CWs) are one of the targets for external stressors. Juvenile P. omorika trees were treated either with 21 day-high doses UV-B or with 7 day- UV-C in open-top chambers. Using spectroscopic and biochemical techniques, it was shown that the response to UV radiation includes numerous modifications in needle CW structure: relative content of xylan, xyloglucan, lignin and cellulose decreased; cellulose crystallinity changed; yield of lignin monomers with stronger connection of CC in side chain with the ring increased; re-distribution of inter- and intra-polymer H-bonds occurred. The recovery was mediated by an increase in the activities and changes in isoform profiles of CW bound covalent peroxidases (POD) and polyphenol oxidases (PO) (UV-B), and ionic POD and covalent PO (UV-C). A connection between activities of specific POD/PO isoforms and phenolic species (m- and p-coumaric acid, pinoresinol and cinnamic acid derivatives) was demonstrated, and supported by changes in the sRNA profile. In vivo fluorometry showed phenolics accumulation in needle epidermal CWs. These results imply transversal connections between polymers and changed mechanical properties of needle CW as a response to UV. The CW alterations enabled maintenance of physiological functions, as indicated by the preserved chlorophyll content and/or organization. The current study provides evidence that in conifers, needle CW response to both UV-B and UV-C includes biochemical modifications and structural remodeling.


Assuntos
Picea , Parede Celular , Celulose , Lignina , Raios Ultravioleta
6.
Appl Microbiol Biotechnol ; 101(6): 2281-2290, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942755

RESUMO

Pectin was modified by oxidation with sodium periodate at molar ratios of 2.5, 5, 10, 15 and 20 mol% and reductive amination with tyramine and sodium cyanoborohydride afterwards. Concentration of tyramine groups within modified pectin ranged from 54.5 to 538 µmol/g of dry pectin while concentration of ionizable groups ranged from 3.0 to 4.0 mmol/g of dry polymer compared to 1.5 mmol/g before modification due to the introduction of amino group. All tyramine-pectins showed exceptional gelling properties and could form hydrogel both by cross-linking of carboxyl groups with calcium or by cross-linking phenol groups with peroxidase in the presence of hydrogen peroxide. These hydrogels were tested as carriers for soybean hull peroxidase (SHP) immobilization within microbeads formed in an emulsion based enzymatic polymerization reaction. SHP immobilized within tyramine-pectin microbeads had an increased thermal and organic solvent stability compared to the soluble enzyme. Immobilized SHP was more active in acidic pH region and had slightly decreased K m value of 2.61 mM compared to the soluble enzyme. After 7 cycles of repeated use in batch reactor for pyrogallol oxidation microbeads, immobilized SHP retained half of the initial activity.


Assuntos
Enzimas Imobilizadas/química , Glycine max/química , Pectinas/química , Ácido Periódico/química , Peroxidase/química , Proteínas de Plantas/química , Boroidretos/química , Reutilização de Equipamento , Hidrogéis/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Glycine max/enzimologia , Tiramina/química , Resíduos
7.
Bioprocess Biosyst Eng ; 38(12): 2389-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410191

RESUMO

The enzyme 4-oxalocrotonate tautomerase (4-OT) encoded by the xylH gene is a part of the degradation pathway of aromatic compounds in Pseudomonas putida mt-2. 4-OT was described to catalyze Michael-type addition of acetaldehyde to ß-nitrostyrene, and the whole cell system based on recombinantly expressed 4-OT has been developed previously. In this study biocatalytic process based on Escherichia coli whole cells expressing 4-OT was significantly improved using immobilization and ex situ product recovery strategies. Whole cell immobilization in alginate beads was applied in biocatalytic production of 4-nitro-3-phenyl-butanal from ß-nitrostyrene and acetaldehyde. Immobilized biocatalyst showed wider pH activity range and could tolerate twofold higher initial concentrations of substrate in comparison to the free whole cell biocatalyst. Beads retained their initial activity over 10 consecutive biotransformations of the model reaction and remained suitable for the repetitive use with 85% of the initial activity after two months of storage. Bioprocess was further improved by utilizing Amberlite XAD-2 hydrophobic resin for the product recovery. With this modification, the amount of organic solvent was reduced 40-fold in comparison to previously reported method making this biocatalytic process greener.


Assuntos
Escherichia coli/metabolismo , Isomerases/metabolismo , Estirenos/metabolismo , Biocatálise , Biotransformação , Escherichia coli/genética , Isomerases/genética
8.
Bioprocess Biosyst Eng ; 37(5): 799-804, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24061564

RESUMO

Soybean hull peroxidase (SHP, E.C. 1.11.1.7) was immobilized by a glutaraldehyde and periodate method onto series of macroporous copolymers of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA), poly(GMA-co-EGDMA) with various surface characteristics and pore size diameters ranging from 44 to 200 nm. Glutaraldehyde immobilization method and poly(GMA-co-EGDMA) named SGE 20/12 with pore sizes of 120 nm gave immobilized enzyme with highest specific activity of 25 U/g. Deactivation studies showed that immobilization increased stability of SHP and that surface characteristics of the used copolymer had a major influence on a stability of immobilized enzyme at high temperatures and in an organic solvent. The highest thermostability was obtained using the copolymer SGE 20/12 with pore size of 120 nm, while the highest stability in dioxane had SHP immobilized onto copolymer SGE 10/4 with pore size of 44 nm. Immobilized SHP showed a wider pH optimum as compared to the native enzyme especially at alkaline pH values and 3.2 times increased K m value for pyrogallol. After 6 cycles of repeated use in batch reactor, immobilized SHP retained 25 % of its original activity. Macroporous copolymers with different surface characteristics can be used for fine tuning of activity and stability of immobilized SHP to obtain a biocatalyst suitable for phenol oxidation or polymer synthesis in organic solvents.


Assuntos
Enzimas Imobilizadas/química , Compostos de Epóxi/química , Glycine max/enzimologia , Metacrilatos/química , Peroxidase/química , Proteínas de Plantas/química , Estabilidade Enzimática , Temperatura Alta , Propriedades de Superfície
9.
Protein Expr Purif ; 89(2): 175-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23562736

RESUMO

Glucose oxidase (GOx) catalyzes the oxidation of glucose to form gluconic acid and hydrogen peroxide, a reaction with important applications in food preservation, the manufacture of cosmetics and pharmaceuticals, and the development of glucose monitoring devices and biofuel cells. We expressed Aspergillus niger wild type GOx and the B11 mutant, which has twice the activity of the wild type enzyme at pH 5.5, as C-terminal fusions with the Saccharomyces cerevisiae Aga2 protein, allowing the fusion proteins to be displayed on the surface of yeast EBY100 cells. After expression, we extracted the proteins from the yeast cell wall and purified them by ion-exchange chromatography and ultrafiltration. This produced a broad 100-140kDa band by denaturing SDS-PAGE and a high-molecular-weight band by native PAGE corresponding to the activity band revealed by zymography. The wild type and B11 fusion proteins had kcat values of 33.3 and 61.3s(-1) and Km values for glucose of 33.4 and 27.9mM, respectively. The pH optimum for both enzymes was 5.0. The kinetic properties of the fusion proteins displayed the same ratio as their native counterparts, confirming that yeast surface display is suitable for the high-throughput directed evolution of GOx using flow cytometry for selection. Aga2-GOx fusion proteins in the yeast cell wall could also be used as immobilized catalysts for the production of gluconic acid.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/genética , Moléculas de Adesão Celular/genética , Glucose Oxidase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Moléculas de Adesão Celular/isolamento & purificação , Moléculas de Adesão Celular/metabolismo , Clonagem Molecular , Evolução Molecular Direcionada , Glucose Oxidase/isolamento & purificação , Glucose Oxidase/metabolismo , Cinética , Mutação Puntual , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Appl Biochem Biotechnol ; 168(5): 1288-301, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941271

RESUMO

A macroporous copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate, poly(GMA-co-EGDMA), with various surface characteristics and mean pore size diameters ranging from 44 to 200 nm was synthesized, modified with 1,2-diaminoethane, and tested as a carrier for immobilization of horseradish peroxidase (HRP) by two covalent methods, glutaraldehyde and periodate. The highest specific activity of around 35 U g(-1) dry weight of carrier was achieved on poly(GMA-co-EGDMA) copolymers with mean pore diameters of 200 and 120 nm by the periodate method. A study of deactivation kinetics at 65 °C and in 80 % dioxane revealed that periodate immobilization also produced an appreciable stabilization of the biocatalyst, while stabilization factor depended strongly on the surface characteristics of the copolymers. HRP immobilized on copolymer with a mean pore diameter of 120 nm by periodate method showing not only the highest specific activity but also good stability was further characterized. It appeared that the immobilization resulted in the stabilization of enzyme over a broader pH range while the Michaelis constant value (K (m)) of the immobilized HRP was 10.8 mM, approximately 5.6 times higher than that of the free enzyme. After 6 cycles of repeated use in a batch reactor for pyrogallol oxidation, the immobilized HRP retained 45 % of its original activity.


Assuntos
Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Metacrilatos/química , Polímeros/química , Compostos de Epóxi/química , Etilenoglicóis , Glutaral/química , Ligação de Hidrogênio , Cinética , Ácido Periódico/química , Pirogalol/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA