Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cells ; 9(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32089540

RESUMO

The function and regulation of amyloid-beta (Aß) in healthy and diseased liver remains unexplored. Because Aß reduces the integrity of the blood-brain barrier we have examined its potential role in regulating the sinusoidal permeability of normal and cirrhotic liver. Aß and key proteins that generate (beta-secretase 1 and presenilin-1) and degrade it (neprilysin and myelin basic protein) were decreased in human cirrhotic liver. In culture, activated hepatic stellate cells (HSC) internalized Aß more efficiently than astrocytes and HSC degraded Aß leading to suppressed expression of α-smooth muscle actin (α-SMA), collagen 1 and transforming growth factor ß (TGFß). Aß also upregulated sinusoidal permeability marker endothelial NO synthase (eNOS) and decreased TGFß in cultured human liver sinusoidal endothelial cells (hLSEC). Liver Aß levels also correlate with the expression of eNOS in transgenic Alzheimer's disease mice and in human and rodent cirrhosis/fibrosis. These findings suggest a previously unexplored role of Aß in the maintenance of liver sinusoidal permeability and in protection against cirrhosis/fibrosis via attenuation of HSC activation.


Assuntos
Peptídeos beta-Amiloides/uso terapêutico , Fibrose/tratamento farmacológico , Expressão Gênica/genética , Cirrose Hepática/terapia , Fragmentos de Peptídeos/uso terapêutico , Peptídeos beta-Amiloides/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Cirrose Hepática/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
2.
Cell Transplant ; 23 Suppl 1: S123-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302802

RESUMO

In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid ß (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.


Assuntos
Doença de Alzheimer/terapia , Encéfalo/patologia , Macrófagos/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Microglia/transplante , Doença de Parkinson/terapia , Administração Intranasal , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Int J Mol Sci ; 15(2): 2858-75, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24557580

RESUMO

We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1 release, while 48-72 h hypoxia resulted in increase of ET-1 release from astrocytes that could be abolished by EPO. The endothelin receptor type A (ETA) antagonist BQ123 increased extracellular levels of ET-1 in human fetal astroglial cell line (SV-FHAS). The survival and proliferation of rat primary astrocytes, neural precursors, and neurons upon hypoxic conditions were increased upon administration of BQ123. Hypoxic injury and aging affected the interaction between the EPO and ET systems. Under hypoxia EPO decreased ET-1 release from astrocytes, while ETA receptor blockade enhanced the expression of EPO mRNA and EPO receptor in culture-aged rat astroglia. The blockade of ETA receptor can increase the availability of ET-1 to the ETB receptor and can potentiate the neuroprotective effects of EPO. Thus, the new therapeutic use of combined administration of EPO and ETA receptor antagonists during hypoxia-associated neurodegenerative disorders of the central nervous system (CNS) can be suggested.


Assuntos
Hipóxia Celular , Endotelina-1/metabolismo , Eritropoetina/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Eritropoetina/genética , Humanos , Peptídeos Cíclicos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor de Endotelina A/agonistas , Receptor de Endotelina A/metabolismo , Receptores da Eritropoetina/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
PLoS One ; 8(10): e77182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124607

RESUMO

Extracellular accumulation of toxic concentrations of glutamate (Glu) is a hallmark of many neurodegenerative diseases, often accompanied by hypoxia and impaired metabolism of this neuromediator. To address the question whether the multifunctional neuroprotective action of erythropoietin (EPO) extends to the regulation of extracellular Glu-level and is age-related, young and culture-aged rat astroglial primary cells (APC) were simultaneously treated with 1mM Glu and/or human recombinant EPO under normoxic and hypoxic conditions (NC and HC). EPO increased the Glu uptake by astrocytes under both NC and especially upon HC in culture-aged APC (by 60%). Moreover, treatment with EPO up-regulated the activity of glutamine synthetase (GS), the expression of glutamate-aspartate transporter (GLAST) and the level of EPO mRNA. EPO alleviated the Glu- and hypoxia-induced LDH release from astrocytes. These protective EPO effects were concentration-dependent and they were strongly intensified with age in culture. More than a 4-fold increase in apoptosis and a 2-fold decrease in GS enzyme activity was observed in APC transfected with EPO receptor (EPOR)-siRNA. Our in vivo data show decreased expression of EPO and a strong increase of EPOR in brain homogenates of APP/PS1 mice and their wild type controls during aging. Comparison of APP/PS1 and age-matched WT control mice revealed a stronger expression of EPOR but a weaker one of EPO in the Alzheimer's disease (AD) model mice. Here we show for the first time the direct correlation between the extent of differentiation (age) of astrocytes and the efficacy of EPO in balancing extracellular glutamate clearance and metabolism in an in-vitro model of hypoxia and Glu-induced astroglial injury. The clinical relevance of EPO and EPOR as markers of brain cells vulnerability during aging and neurodegeneration is evidenced by remarkable changes in their expression levels in a transgenic model of AD and their WT controls.


Assuntos
Astrócitos/metabolismo , Eritropoetina/metabolismo , Ácido Glutâmico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Senescência Celular , Ativação Enzimática/efeitos dos fármacos , Eritropoetina/genética , Eritropoetina/farmacologia , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Masculino , Ratos , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
5.
Rejuvenation Res ; 14(1): 3-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21291297

RESUMO

Safe and effective cell delivery remains one of the main challenges in cell-based therapy of neurodegenerative disorders. Graft survival, sufficient enrichment of therapeutic cells in the brain, and avoidance of their distribution throughout the peripheral organs are greatly influenced by the method of delivery. Here we demonstrate for the first time noninvasive intranasal (IN) delivery of mesenchymal stem cells (MSCs) to the brains of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. IN application (INA) of MSCs resulted in the appearance of cells in the olfactory bulb, cortex, hippocampus, striatum, cerebellum, brainstem, and spinal cord. Out of 1 × 106 MSCs applied intranasally, 24% survived for at least 4.5 months in the brains of 6-OHDA rats as assessed by quantification of enhanced green fluorescent protein (EGFP) DNA. Quantification of proliferating cell nuclear antigen-positive EGFP-MSCs showed that 3% of applied MSCs were proliferative 4.5 months after application. INA of MSCs increased the tyrosine hydroxylase level in the lesioned ipsilateral striatum and substantia nigra, and completely eliminated the 6-OHDA-induced increase in terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine, 5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) staining of these areas. INA of EGFP-labeled MSCs prevented any decrease in the dopamine level in the lesioned hemisphere, whereas the lesioned side of the control animals revealed significantly lower levels of dopamine 4.5 months after 6-OHDA treatment. Behavioral analyses revealed significant and substantial improvement of motor function of the Parkinsonian forepaw to up to 68% of the normal value 40-110 days after INA of 1 × 106 cells. MSC-INA decreased the concentrations of inflammatory cytokines-interleukin-1ß (IL-1ß), IL-2, -6, -12, tumor necrosis factor (TNF), interferon-γ (IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF)-in the lesioned side to their levels in the intact hemisphere. IN administration provides a highly promising noninvasive alternative to the traumatic surgical procedure of transplantation and allows targeted delivery of cells to the brain with the option of chronic application.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Doença de Parkinson/terapia , Administração Intranasal , Animais , Western Blotting , Proliferação de Células , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Interleucinas/metabolismo , Masculino , Neostriado/enzimologia , Neostriado/patologia , Oxidopamina , Ratos , Ratos Sprague-Dawley , Substância Negra/enzimologia , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Eur J Cell Biol ; 88(6): 315-24, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19324456

RESUMO

The safety and efficacy of cell-based therapies for neurodegenerative diseases depends on the mode of cell administration. We hypothesized that intranasally administered cells could bypass the blood-brain barrier by migrating from the nasal mucosa through the cribriform plate along the olfactory neural pathway into the brain and cerebrospinal fluid (CSF). This would minimize or eliminate the distribution of cellular grafts to peripheral organs and will help to dispense with neurosurgical cell implantation. Here we demonstrate transnasal delivery of cells to the brain following intranasal application of fluorescently labeled rat mesenchymal stem cells (MSC) or human glioma cells to naive mice and rats. After cells crossed the cribriform plate, two migration routes were identified: (1) migration into the olfactory bulb and to other parts of the brain; (2) entry into the CSF with movement along the surface of the cortex followed by entrance into the brain parenchyma. The delivery of cells was enhanced by hyaluronidase treatment applied intranasally 30 min prior to the application of cells. Intranasal delivery provides a new non-invasive method for cell delivery to the CNS.


Assuntos
Administração Intranasal , Encéfalo/citologia , Encéfalo/metabolismo , Transplante de Células-Tronco/métodos , Animais , Linhagem Celular , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Condutos Olfatórios , Ratos , Ratos Wistar
7.
Neurochem Res ; 32(9): 1489-98, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17406976

RESUMO

The present study investigated the role of angiotensin receptors (AT-R) in the survival and inflammatory response of astroglia upon hypoxic injury. Exposure of rat astroglial primary cultures (APC) to hypoxic conditions (HC) led to decreased viability of the cells and to a 3.5-fold increase in TNF-alpha release. AT-R type1 (AT1-R) antagonist losartan and its metabolite EXP3174 decrease the LDH release (by 36 +/- 9%; 45 +/- 6%) from APC under HC. Losartan diminished TNF-alpha release (by 40 +/- 15%) and the number of TUNEL-cells by 204 +/- 38% under HC, alone and together with angiotensin II (ATII), while EXP3174 was dependent on ATII for its effect on TNF-alpha. The AT2-R antagonist, PD123.319, did not influence the release of LDH and TNF-alpha under normoxic (NC) and HC. These data suggest that AT1-R may decrease the susceptibility of astrocytes to hypoxic injury and their propensity to release TNF-alpha. AT1-R antagonists may therefore be of therapeutic value during hypoxia-associated neurodegeneration.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Hipóxia Celular/fisiologia , Losartan/farmacologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Imidazóis/farmacologia , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/biossíntese , Receptor Tipo 2 de Angiotensina/biossíntese , Tetrazóis/farmacologia
8.
Eur J Cell Biol ; 84(11): 907-13, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16323287

RESUMO

Our recent study [Danielyan et al., 2005. Eur. J. Cell Biol. 84, 567-579] showed an additive protective effect of endothelin (ET) receptor A (ETA-R) blockade and erythropoietin (EPO) on the survival and rejuvenation of rat astroglial cells exposed to hypoxia. Whether the effects observed with rodent astroglial cells can be reproduced in human astrocytes and whether these effects of ETA-R blockade and EPO on astrocytes are associated with neuronal survival remained open. Therefore, in the present study, the effects of the ETA-R antagonist BQ-123 and EPO on the maintenance of the neuronal population and survival of the human fetal astroglial cell line (SV-FHAS) under normoxic and hypoxic conditions (NC and HC, respectively) were investigated. Rat brain primary cultures exposed to BQ-123 and/or EPO revealed an increase in the number of beta-III tubulin-positive neurons under NC. The hypoxia-caused loss of neurons was abolished by administration of BQ-123 or EPO. Simultaneous application of EPO and BQ-123 led to an additive protective effect on the generation of neurons under NC only. By contrast, BQ-788, the selective ETB-R antagonist, diminished the neuronal population both in NC and HC. Both under NC and HC the number of non-differentiated nestin+/GFAP- neural cells increased upon application of EPO or BQ-123. SV-FHAS responded to BQ-123 or EPO by a decrease in LDH activity in the culture medium under NC (35%) and HC (26% LDH decrease). Concomitant effects of EPO and BQ-123 were illustrated in an additional increase in the survival of human astrocytes (33% under NC and 17% under HC). These data hint at a neuroprotective therapeutic potency of ETA-R blockade, which either alone or in combination with EPO may improve the survival of astroglial and neuronal cells upon hypoxic injury.


Assuntos
Astrócitos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Imuno-Histoquímica , Ratos , Ratos Wistar
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 828(1-2): 122-5, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16203185

RESUMO

A modification of the Bio-Rad total homocysteine HPLC-test is presented in order to enable not only plasma homocysteine measurements but also the quantification of homocysteine in urine samples using the same principle of measurement. Coelution of the internal standard provided in the test kit with an endogenous compound in urine demands for an alternative analytical procedure. Therefore, we introduced 3-mercaptopropionic acid as a substitute for the internal standard. The analytical method validation was performed for the matrix of urine specimens. The applicability of this method was demonstrated in a clinical study with volunteers after homocysteine thiolactone hydrochloride loading.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Homocistina/urina , Ácido 3-Mercaptopropiônico/química , Humanos , Masculino , Reprodutibilidade dos Testes
10.
Eur J Cell Biol ; 84(5): 567-79, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16003910

RESUMO

In the present study the role of endothelin (ET) and its receptors (ETA-R and ETB-R) in cellular mechanisms underlying the resistance of astroglial cells to low oxygen level and development of hypoxia has been investigated. To define the influences of ET and its receptors on survival and on antigenic as well as morphologic differentiation of rat astroglial cells in normoxic (NC) and hypoxic culture (HC) the selective antagonists of ETA-R (BQ-123) and ETB-R (BQ-788) were used. Treatment of HC with BQ-123 caused an increase in cell number and inhibited the hypoxia-induced apoptosis by 37%. BQ-123 decreased the hypoxia-induced cytotoxicity in HC. These effects of BQ-123 were abolished in cultures simultaneously treated with BQ-123 and BQ-788. Administration of BQ-788 alone decreased the number of living cells in NC, but not in HC. The activity of caspase-3/-7 was not changed by exposure of NC and HC to BQ-788. The protection provided by BQ-123 to astroglial cells against cytotoxicity in NC and HC was similar to that of erythropoietin (EPO), a cytokine with established neuroprotective effects. The functional improvement of astroglial cells and slowing down of their differentiation under exposure to BQ-123, or EPO, or BQ-123 + EPO has been evidenced by an increased number of nestin+/glial fibrillary acidic protein-positive (GFAP+) astrocytes accompanied by decrease of nestin-/GFAP+ cells. The simultaneous treatment with BQ-123 and EPO additionally decreased the activities of caspase-3/-7 (64%) and release of LDH into the medium (94%). The benefits in the functional states of astrocytes obtained by combined treatment of HC with BQ-123 and EPO suggest a new therapeutic strategy in treatment of hypoxic brain injury.


Assuntos
Anti-Hipertensivos/farmacologia , Astrócitos/metabolismo , Antagonistas do Receptor de Endotelina A , Eritropoetina/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ratos , Ratos Wistar , Receptor de Endotelina A/metabolismo
11.
Nephron Exp Nephrol ; 98(4): e124-31, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15627795

RESUMO

BACKGROUND: In humans, infusion of angiotensin II increases erythropoietin (EPO) serum levels in a dose-dependent manner. However, it is not known whether angiotensin II stimulates EPO-producing renal fibroblasts directly via a receptor or by alteration of renal hemodynamics with a consecutive decrease of renal blood flow. The purpose of this study was to investigate EPO secretion and gene expression under direct angiotensin II stimulation in a cell model thereby excluding hemodynamic effects. METHODS: In an established EPO-secreting cell line (HepG2), EPO concentrations were measured under various conditions (normoxia and hypoxia) and different angiotensin II concentrations. mRNA levels of EPO were analyzed by LightCycler quantitative PCR after reverse transcription normalized to the housekeeping gene cyclophilin. RESULTS: Angiotensin II did not affect EPO production in any concentration (1 nM or 100 microM) under conditions of normoxia. Reduced oxygen tension (1% O2) led to the expected increase of EPO and EPO gene expression. EPO secretion stimulated by hypoxia is not significantly changed by any concentration of angiotensin II. CONCLUSION: In summary, this study shows that angiotensin II does not alter EPO production in HepG2 cell culture under normoxic or hypoxic conditions. This might point towards the hypothesis that in vivo renal cortical blood flow and consecutively the decrease of oxygen tension may lead to an increase of EPO secretion.


Assuntos
Angiotensina II/farmacologia , Eritropoetina/biossíntese , Western Blotting , Hipóxia Celular , Linhagem Celular Tumoral , Eritropoetina/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucinas/biossíntese , Interleucinas/genética , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA