Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 460, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28610613

RESUMO

BACKGROUND: Gene duplication has led to a most remarkable adaptation involved in vertebrates' host-pathogen arms-race, the major histocompatibility complex (MHC). However, MHC duplication history is as yet poorly understood in non-mammalian vertebrates, including birds. RESULTS: Here, we provide evidence for the evolution of two ancient avian MHC class IIB (MHCIIB) lineages by a duplication event prior to the radiation of all extant birds >100 million years ago, and document the role of concerted evolution in eroding the footprints of the avian MHCIIB duplication history. CONCLUSIONS: Our results suggest that eroded footprints of gene duplication histories may mimic birth-death evolution and that in the avian MHC the presence of the two lineages may have been masked by elevated rates of concerted evolution in several taxa. Through the presence of a range of intermediate evolutionary stages along the homogenizing process of concerted evolution, the avian MHCIIB provides a remarkable illustration of the erosion of multigene family duplication history.


Assuntos
Aves/genética , Evolução Molecular , Genes MHC da Classe II/genética , Família Multigênica/genética , Animais , Duplicação Gênica
2.
Front Zool ; 14: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239400

RESUMO

BACKGROUND: Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with 'good genes' (absolute criteria) and 'complementary genes' (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. RESULTS: We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the 'inbreeding avoidance' and 'complementary genes' hypotheses. CONCLUSIONS: Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges.

3.
Nature ; 518(7539): 371-5, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25686609

RESUMO

Darwin's finches, inhabiting the Galápagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.


Assuntos
Bico/anatomia & histologia , Evolução Molecular , Tentilhões/anatomia & histologia , Tentilhões/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Equador , Feminino , Tentilhões/classificação , Tentilhões/embriologia , Fluxo Gênico , Genoma/genética , Haplótipos/genética , Hibridização Genética , Ilhas do Oceano Índico , Masculino , Dados de Sequência Molecular , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PLoS One ; 8(7): e69135, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935938

RESUMO

Among bird species, the most studied major histocompatibility complex (MHC) is the chicken MHC. Although the number of studies on MHC in free-ranging species is increasing, the knowledge on MHC variation in species closely related to chicken is required to understand the peculiarities of bird MHC evolution. Here we describe the variation of MHC class IIB (MHCIIB) exon 2 in a population of the Grey partridge (Perdix perdix), a species of high conservation concern throughout Europe and an emerging galliform model in studies of sexual selection. We found 12 alleles in 108 individuals, but in comparison to other birds surprisingly many sites show signatures of historical positive selection. Individuals displayed between two to four alleles both on genomic and complementary DNA, suggesting the presence of two functional MHCIIB loci. Recombination and gene conversion appear to be involved in generating MHCIIB diversity in the Grey partridge; two recombination breakpoints and several gene conversion events were detected. In phylogenetic analysis of galliform MHCIIB, the Grey partridge alleles do not cluster together, but are scattered through the tree instead. Thus, our results indicate that the Grey partridge MHCIIB is comparable to most other galliforms in terms of copy number and population polymorphism.


Assuntos
Éxons/genética , Galliformes/genética , Conversão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo Genético , Recombinação Genética/genética , Seleção Genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/química , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
5.
Mol Ecol Resour ; 12(2): 285-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22018268

RESUMO

Genes of the highly dynamic major histocompatibility complex (MHC) are directly linked to individual fitness and are of high interest in evolutionary ecology and conservation genetics. Gene duplication and positive selection usually lead to high levels of polymorphism in the MHC region, making genotyping of MHC a challenging task. Here, we compare the performance of two methods for MHC class I genotyping in a passerine with highly duplicated MHC class I genes: capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) analysis and 454 GS FLX Titanium pyrosequencing. According to our findings, the number of MHC variants (called alleles for simplicity) detected by CE-SSCP is significantly lower than detected by 454. To resolve discrepancies between the two methods, we cloned and Sanger sequenced a MHC class I amplicon for an individual with high number of alleles. We found a perfect congruence between cloning/Sanger sequencing results and 454. Thus, in case of multi-locus amplification, CE-SSCP considerably underestimates individual MHC diversity. However, numbers of alleles detected by both methods are significantly correlated, although the correlation is weak (r = 0.32). Thus, in systems with highly duplicated MHC, 454 provides more reliable information on individual diversity than CE-SSCP.


Assuntos
Eletroforese Capilar/métodos , Genes MHC da Classe II , Passeriformes/genética , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA/métodos , Animais , Proteínas Aviárias/genética , Genótipo , Dados de Sequência Molecular , Passeriformes/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA