Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Am Soc Mass Spectrom ; 34(3): 472-483, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693165

RESUMO

While soluble forms of amyloid-ß (Aß) and Tau work together to drive healthy neurons into a disease state, how their interaction may control the prion-like propagation and neurotoxicity of Tau is not fully understood. The cross-linking via disulfide bond formation is crucial for Tau oligomers to obtain stable conformers and spread between cells. This work thus focuses on how Aß42 regulates this critical process. By studying the interactions between Aß42 and TauPHF43, a construct that mimics the Tau R3 isoform, has a similar length to Aß42, and contains one cysteine (Cys-322), we discovered that fresh Aß42 could protect Tau against the formation of disulfide cross-linked dimers. We showed that the monomeric and small Aß oligomers (the "nonamyloidogenic Aß") efficiently disassembled tau dimers and heparin-induced Tau oligomers to recover Tau monomers. Interestingly, Aß serves the role of an antioxidant to prevent disulfide bond formation, as supported by the experiments of Aß with cystine. Furthermore, using cyclosporine A (CycA), a macrocyclic ß-sheet disruptor, we demonstrated that targeting amyloidogenic Aß with CycA does not affect the TauPHF43 disassembly driven by Aß42. Separately, we assessed the initial toxicity of Aß42 and TauPHF43 in acute brain slices and found that Aß42 is more toxic than TauPHF43 or the two peptides combined. Our work highlights a potential protective role of Aß42 monomers in AD that was previously overlooked while focusing on the mechanism behind Aß42 aggregation leading to tau dysfunction.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Peptídeos beta-Amiloides/química , Encéfalo/metabolismo , Neurônios , Fragmentos de Peptídeos/química
2.
Neuroscience ; 485: 65-77, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063583

RESUMO

It is well established that the damaging effects of drugs of abuse, such as cocaine, can extend beyond the user to their offspring. While most preclinical models of the generational effects of cocaine abuse have focused on maternal effects, we, and others, report distinct effects on offspring sired by fathers treated with cocaine prior to breeding. However, little is known about the effects of paternal cocaine use on first generation (F1) offspring's social behaviors. Here, we expand upon our model of oral self-administered paternal cocaine use to address the idea that paternal cocaine alters first generation offspring social behaviors through modulation of the oxytocin system. F1 cocaine-sired males displayed unaltered social recognition vs. non-cocaine sired controls but showed increased investigation times that were not related to altered olfaction. Paternal cocaine did not alter F1 male-aggression behavior or depression-like behaviors, but cocaine-sired males did display decreased anxiety-like behaviors. Female F1 behavior was similarly examined, but there were no effects of paternal cocaine. Cocaine-sired male mice also exhibited localized oxytocin receptor expression differences vs. controls in several brain regions regulating social behavior. These results provide evidence for effects of paternal cocaine exposure on social behaviors in male offspring with associated alterations in central oxytocin transmission.


Assuntos
Cocaína , Animais , Encéfalo/metabolismo , Cocaína/farmacologia , Pai , Feminino , Humanos , Masculino , Camundongos , Ocitocina/metabolismo , Comportamento Paterno/fisiologia , Receptores de Ocitocina/metabolismo , Comportamento Social
3.
Protein Sci ; 31(3): 716-727, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954854

RESUMO

Atomic structures of amyloid oligomers that capture the neurodegenerative disease pathology are essential to understand disease-state causes and finding cures. Here we investigate the G6W mutation of the cytotoxic, hexameric amyloid model KV11. The mutation results into an asymmetric dodecamer composed of a pair of 30° twisted antiparallel ß-sheets. The complete break between adjacent ß-strands is unprecedented among amyloid fibril crystal structures and supports that our structure is an oligomer. The poor shape complementarity between mated sheets reveals an interior channel for binding lipids, suggesting that the toxicity may be due to a perturbation of lipid transport rather than a direct disruption of membrane integrity. Viability assays on mouse suprachiasmatic nucleus, anterior hypothalamus, and cerebral cortex demonstrated selective regional vulnerability consistent with Alzheimer's disease. Neuropeptides released from the brain slices may provide clues to how G6W initiates cellular injury.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Animais , Encéfalo/metabolismo , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/metabolismo , Fragmentos de Peptídeos/química
4.
Anal Methods ; 13(11): 1364-1373, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33644791

RESUMO

Ex vivo brain slice cultures are utilized as analytical models for studying neurophysiology. Common approaches to maintaining slice cultures include roller tube and membrane interface techniques. The rise of organ-on-chip technologies has demonstrated the value of microfluidic perfusion culture systems for sampling and analysis of complex biology under well-controlled in vitro or ex vivo conditions. A number of approaches to microfluidic brain slice culture have been developed, however these typically involve complex design, fabrication, or operational parameters in order to meet the high oxygen demands of brain slices. Here, we present proof-of-principle for a novel approach to microfluidic brain slice culture. In this system, which we term a microfluidic bubble perfusion device, principles of droplet microfluidics were employed to generate droplets of perfusion media dispersed between bubbles of carbogen gas, and brain tissue slices were perfused with the resulting monodispersed droplets and bubbles. The challenge of tissue immobilization in the flow system was addressed using a two-part cytocompatible carbohydrate-based tissue adhesive. Best practices are discussed for perfusion chamber designs that maintain segmented flow throughout the course of perfusion. Control of droplet and bubble volumes was possible across the range of ca. 4-15 µL, bubble generation frequency was well controlled in the range ca. 1-7 bubbles per min, and bubble duty cycle was well controlled across the range ca. 20-80%. Murine hypothalamic tissue slices containing the suprachiasmatic nuclei were successfully maintained for durations of 8-10 hours, with tissue remaining viable for the duration of perfusion as assessed by Ca2+ imaging and propidium iodide (PI) staining.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Animais , Encéfalo , Dispositivos Lab-On-A-Chip , Camundongos , Perfusão
5.
Anal Bioanal Chem ; 412(12): 2785-2793, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32100074

RESUMO

Epinephrine autoinjectors (EAIs) are important first aid medications for treating anaphylaxis. A 10-fold price increase over the past 12 years and evidence that expired EAIs may still contain significant doses of available epinephrine have motivated interest in the efficacy of expired EAIs as treatments of last resort. Degradation of expired EAIs, which can be caused by improper storage conditions, results in various degrees of discoloration of the epinephrine solution. Previous studies have determined that significant epinephrine remains available in expired EAIs, but these have only considered EAIs that show no discoloration. Here, we investigate the potential for colorimetric estimation of available epinephrine dose based on the degree of discoloration in expired EAIs. The correlation of available epinephrine dose and time since expiration date was poor (r = - 0.37), as determined by an industry standard UHPLC protocol. Visible absorbance of the samples integrated across the range 430-475 nm correlated well with available epinephrine dose (r = - 0.71). This wavelength corresponds to the blue channel of a typical smartphone camera Bayer filter. Smartphone camera images of the EAI solutions in various illumination conditions were analyzed to assign color indices representing the degree of discoloration. Color index of the samples showed similar correlation (|r| > 0.7) with available epinephrine dose as that of visible spectrophotometry. Smartphone imaging colorimetry is proposed as a potential point-of-use epinephrine dose estimator for expired and degraded EAIs. Graphical abstract.


Assuntos
Anafilaxia/tratamento farmacológico , Diagnóstico por Imagem/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos/normas , Epinefrina/análise , Autoadministração/métodos , Smartphone/instrumentação , Epinefrina/administração & dosagem , Humanos , Injeções Intramusculares , Autoadministração/instrumentação
6.
Eur J Neurosci ; 51(1): 47-70, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30269387

RESUMO

The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.


Assuntos
Relógios Circadianos , Animais , Ritmo Circadiano , Cobre , Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Núcleo Supraquiasmático
7.
Behav Brain Res ; 367: 68-81, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30910707

RESUMO

Paternal cocaine use causes phenotypic alterations in offspring behavior and associated neural processing. In rodents, changes in first generation (F1) offspring include drug reward behavior, circadian timing, and anxiety responses. This study, utilizing a murine (C57BL/6J) oral cocaine model, examines the effects of paternal cocaine exposure on fundamental characteristics of offspring reward responses, including: 1) the extent of cocaine-induced effects after different durations of sire drug withdrawal; 2) sex- and drug-dependent differences in F1 reward preference; 3) effects on second generation (F2) cocaine preference; and 4) corresponding changes in reward area (nucleus accumbens) mRNA expression. We demonstrate that paternal cocaine intake over a single ˜40-day spermatogenic cycle significantly decreased cocaine (but not ethanol or sucrose) preference in a sex-specific manner in F1 mice from sires mated 24 h after drug withdrawal. However, F1 offspring of sires bred 4 months after withdrawal did not exhibit altered cocaine preference. Altered cocaine preference also was not observed in F2's. RNASeq analyses of F1 accumbens tissue revealed changes in gene expression in male offspring of cocaine-exposed sires, including many genes not previously linked to cocaine addiction. Enrichment analyses highlight genes linked to CNS development, synaptic signaling, extracellular matrix, and immune function. Expression correlation analyses identified a novel target, Fam19a4, that may negatively regulate many genes in the accumbens, including genes already identified in addiction. Collectively, these results reveal that paternal cocaine effects in F1 offspring may involve temporally limited epigenetic germline effects and identify new genetic targets for addiction research.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Epigênese Genética/efeitos dos fármacos , Pai , Regulação da Expressão Gênica/efeitos dos fármacos , Padrões de Herança , Núcleo Accumbens , Recompensa , Animais , Cocaína/administração & dosagem , Citocinas/genética , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Caracteres Sexuais
8.
Neuroscience ; 379: 257-268, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29567492

RESUMO

The present study is the first to explore the multigenerational effects of mammalian paternal cocaine intake on offspring (F1) circadian clock regulation. Parental cocaine use poses significant health risks to the offspring, through both maternal and paternal drug influences. With respect to the latter, recent evidence suggests that a paternal mode of cocaine inheritance involves epigenetic germ line actions that can ultimately disrupt offspring behavior. Based on our previous report in mice that free-running circadian period (tau) is chronically lengthened following withdrawal from long-term cocaine treatment, the present study was undertaken to explore potential epigenetic effects of paternal exposure to cocaine over the ∼40-day murine spermatogenic cycle on F1 circadian regulatory functions. Here we show that, although withdrawal of sires from the cocaine treatment lengthened their tau, such an effect did not persist in adult F1 male or female offspring born from drug-naïve dams. Notably, however, there was a distinct deficit in the ability of F1 cocaine-sired males, but not females, to undergo light-induced phase delay shifts of the circadian clock. In contrast, F1 cocaine-sired females, but not males, had suppressed circadian phase advance shifting responses to two non-photic stimuli: acute i.p. injections of cocaine and the serotonin agonist ([+]8-OH-DPAT). The reduced cocaine shifting in females was not due to suppressed cocaine-induced behavioral arousal. Collectively, these results reveal that a father's cocaine use can disrupt major circadian entrainment mechanisms in his adult progeny in a sex-dependent manner.


Assuntos
Relógios Circadianos/fisiologia , Cocaína/efeitos adversos , Inibidores da Captação de Dopamina/efeitos adversos , Pai , Caracteres Sexuais , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Administração Oral , Animais , Relógios Circadianos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Agonistas do Receptor de Serotonina/farmacologia
9.
BMC Physiol ; 18(1): 2, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370799

RESUMO

BACKGROUND: Circadian rhythms of physiology and behavior are driven by a circadian clock located in the suprachiasmatic nucleus of the hypothalamus. This clock is synchronized to environmental day/night cycles by photic input, which is dependent on the presence of mature brain-derived neurotrophic factor (BDNF) in the SCN. Mature BDNF is produced by the enzyme plasmin, which is converted from plasminogen by the enzyme tissue-type plasminogen activator (tPA). In this study, we evaluate circadian function in mice lacking functional tPA. RESULTS: tPA-/- mice have normal circadian periods, but show decreased nocturnal wheel-running activity. This difference is eliminated or reversed on the second day of a 48-h fast. Similarly, when placed on daily cycles of restricted food availability the genotypic difference in total wheel-running activity disappears, and tPA-/- mice show equivalent amounts of food anticipatory activity to wild type mice. CONCLUSIONS: These data suggest that tPA regulates nocturnal wheel-running activity, and that tPA differentially affects SCN-driven nocturnal activity rhythms and activity driven by fasting or temporal food restriction.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Locomoção , Ativador de Plasminogênio Tecidual/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ingestão de Alimentos , Jejum , Privação de Alimentos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Núcleo Supraquiasmático/metabolismo , Ativador de Plasminogênio Tecidual/genética
10.
Alcohol Clin Exp Res ; 42(2): 315-328, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29139560

RESUMO

BACKGROUND: Alcohol tolerance and withdrawal-induced effects are criteria for alcohol use disorders listed by the DSM-V. Although tolerance and withdrawal have been studied over many decades, there is still uncertainty regarding mechanistic distinctions that characterize these different forms of ethanol (EtOH)-induced plasticity. Previously, we demonstrated that the suprachiasmatic nucleus (SCN) circadian clock develops both acute and rapid tolerance to EtOH inhibition of glutamate-induced circadian phase shifts. Here, we demonstrate that chronic EtOH tolerance and withdrawal-induced glutamate hypersensitivity occur in vitro and that rapid tolerance, chronic tolerance, and glutamate hypersensitivity have distinct cellular changes. METHODS: We use single-unit extracellular electrophysiological recordings to determine whether chronic tolerance to EtOH inhibition of glutamatergic phase shifts and withdrawal-induced glutamate hypersensitivity develop in the SCN. We use Western blotting to compare phosphorylation state and total expression of N-methyl-D-aspartate (NMDA) receptor subunits and associated proteins in the SCN after mice were exposed to varying EtOH consumption paradigms. RESULTS: Chronic tolerance developed after a minimum of 8 days of 4 h/d EtOH access, as indicated by a decreased sensitivity to EtOH inhibition of glutamate-induced phase shifts. We also observed an increased sensitivity to glutamate-induced phase shifts in SCN tissue following withdrawal. We demonstrated an increase in the ratio of NR2B:NR2A NMDA receptor subunit expression after 21 days, but not after 10 days of EtOH drinking. This increase persisted during EtOH withdrawal, along with an increase in NR2B Y1472 phosphorylation, mature brain-derived neurotrophic factor, and phosphorylated TrkB. CONCLUSIONS: These results demonstrate that multiple tolerance forms and withdrawal-induced glutamate hypersensitivity occur in the SCN and that these different forms of EtOH-induced plasticity are accompanied by distinct changes in cellular physiology. Importantly, this study further demonstrates the power of using the SCN as a model system to investigate EtOH-induced plasticity.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Relógios Circadianos/efeitos dos fármacos , Tolerância a Medicamentos , Etanol/farmacologia , Ácido Glutâmico/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/metabolismo , Núcleo Supraquiasmático/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31236509

RESUMO

The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.

12.
Eur J Neurosci ; 45(6): 805-815, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27992087

RESUMO

Glutamate phase shifts the circadian clock in the mammalian suprachiasmatic nucleus (SCN) by activating NMDA receptors. Tissue-type plasminogen activator (tPA) gates phase shifts by activating plasmin to generate m(ature) BDNF, which binds TrkB receptors allowing clock phase shifts. Here, we investigate phase shifting in tPA knockout (tPA-/- ; B6.129S2-Plattm1Mlg /J) mice, and identify urokinase-type plasminogen activator (uPA) as an additional circadian clock regulator. Behavioral activity rhythms in tPA-/- mice entrain to a light-dark (LD) cycle and phase shift in response to nocturnal light pulses with no apparent loss in sensitivity. When the LD cycle is inverted, tPA-/- mice take significantly longer to entrain than C57BL/6J wild-type (WT) mice. SCN brain slices from tPA-/- mice exhibit entrained neuronal activity rhythms and phase shift in response to nocturnal glutamate with no change in dose-dependency. Pre-treating slices with the tPA/uPA inhibitor, plasminogen activator inhibitor-1 (PAI-1), inhibits glutamate-induced phase delays in tPA-/- slices. Selective inhibition of uPA with UK122 prevents glutamate-induced phase resetting in tPA-/- but not WT SCN slices. tPA expression is higher at night than the day in WT SCN, while uPA expression remains constant in WT and tPA-/- slices. Casein-plasminogen zymography reveals that neither tPA nor uPA total proteolytic activity is under circadian control in WT or tPA-/- SCN. Finally, tPA-/- SCN tissue has lower mBDNF levels than WT tissue, while UK122 does not affect mBDNF levels in either strain. Together, these results suggest that either tPA or uPA can support photic/glutamatergic phase shifts of the SCN circadian clock, possibly acting through distinct mechanisms.


Assuntos
Relógios Circadianos , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inativadores de Plasminogênio/farmacologia , Proteólise , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo
13.
J Neurosci ; 35(45): 14957-65, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558769

RESUMO

Melatonin supplementation has been used as a therapeutic agent for several diseases, yet little is known about the underlying mechanisms by which melatonin synchronizes circadian rhythms. G-protein signaling plays a large role in melatonin-induced phase shifts of locomotor behavior and melatonin receptors activate G-protein-coupled inwardly rectifying potassium (GIRK) channels in Xenopus oocytes. The present study tested the hypothesis that melatonin influences circadian phase and electrical activity within the central clock in the suprachiasmatic nucleus (SCN) through GIRK channel activation. Unlike wild-type littermates, GIRK2 knock-out (KO) mice failed to phase advance wheel-running behavior in response to 3 d subcutaneous injections of melatonin in the late day. Moreover, in vitro phase resetting of the SCN circadian clock by melatonin was blocked by coadministration of a GIRK channel antagonist tertiapin-q (TPQ). Loose-patch electrophysiological recordings of SCN neurons revealed a significant reduction in the average action potential rate in response to melatonin. This effect was lost in SCN slices treated with TPQ and SCN slices from GIRK2 KO mice. The melatonin-induced suppression of firing rate corresponded with an increased inward current that was blocked by TPQ. Finally, application of ramelteon, a potent melatonin receptor agonist, significantly decreased firing rate and increased inward current within SCN neurons in a GIRK-dependent manner. These results are the first to show that GIRK channels are necessary for the effects of melatonin and ramelteon within the SCN. This study suggests that GIRK channels may be an alternative therapeutic target for diseases with evidence of circadian disruption, including aberrant melatonin signaling. SIGNIFICANCE STATEMENT: Despite the widespread use of melatonin supplementation for the treatment of sleep disruption and other neurological diseases such as epilepsy and depression, no studies have elucidated the molecular mechanisms linking melatonin-induced changes in neuronal activity to its therapeutic effects. Here, we used behavioral and electrophysiological techniques to address this scientific gap. Our results show that melatonin and ramelteon, a potent and clinically relevant melatonin receptor agonist, significantly affect the neurophysiological function of suprachiasmatic nucleus neurons through activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Given the importance of GIRK channels for neuronal excitability (with >600 publications on these channels to date), our study should generate broad interest from neuroscientists in fields such as epilepsy, addiction, and cognition.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Melatonina/farmacologia , Núcleo Supraquiasmático/fisiologia , Animais , Venenos de Abelha/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Indenos/farmacologia , Masculino , Melatonina/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos
14.
Alcohol ; 49(4): 321-339, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25457753

RESUMO

Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Relógios Circadianos/efeitos dos fármacos , Etanol/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Ácido Glutâmico/metabolismo , Humanos , Técnicas In Vitro , Serotonina/metabolismo , Núcleo Supraquiasmático/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Alcohol Clin Exp Res ; 38(3): 760-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24512529

RESUMO

BACKGROUND: Ethanol (EtOH) triggers cellular adaptations that induce tolerance in many brain areas, including the suprachiasmatic nucleus (SCN), the site of the master circadian clock. EtOH inhibits light-induced phase shifts in the SCN in vivo and glutamate-induced phase shifts in vitro. The in vitro phase shifts develop acute tolerance to EtOH, occurring within minutes of initial exposure, while the in vivo phase shifts exhibit no evidence of chronic tolerance. An intermediate form, rapid tolerance, is not well studied but may predict subsequent chronic tolerance. Here, we investigated rapid tolerance in the SCN clock. METHODS: Adult C57BL/6 mice were provided 15% EtOH or water for one 12-hour lights-off period. For in vitro experiments, SCN-containing brain slices were prepared in the morning and treated for 10 minutes with glutamate +/- EtOH the following night. Single-cell neuronal firing rates were recorded extracellularly during the subsequent day to determine SCN clock phase. For in vivo experiments, mice receiving EtOH 24 hours previously were exposed to a 30-minute light pulse immediately preceded by intraperitoneal saline or 2 g/kg EtOH injection. Mice were then placed in constant darkness and their phase-shifting responses measured. RESULTS: In vitro, the SCN clock from EtOH-exposed mice exhibited rapid tolerance, with a 10-fold increase in EtOH needed to inhibit glutamate-induced phase shifts. Co-application of brain-derived neurotrophic factor prevented EtOH inhibition, consistent with experiments using EtOH-naïve mice. Rapid tolerance lasts 48 to 96 hours, depending on whether assessing in vitro phase advances or phase delays. Similarly, in vivo, prior EtOH consumption prevented EtOH's acute blockade of photic phase delays. Finally, immunoblot experiments showed no changes in SCN glutamate receptor subunit (NR2B) expression or phosphorylation in response to rapid tolerance induction. CONCLUSIONS: The SCN circadian clock develops rapid tolerance to EtOH as assessed both in vivo and in vitro, and the tolerance lasts for several days. These data demonstrate the utility of the circadian system as a model for investigating cellular mechanisms through which EtOH acts in the brain.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Relógios Circadianos/efeitos dos fármacos , Tolerância a Medicamentos , Etanol/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos , Ciclos de Atividade/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Behav Brain Res ; 243: 255-60, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333842

RESUMO

Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (∼3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine's actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cocaína/metabolismo , Cocaína/farmacologia , Proteínas Circadianas Period/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Proteínas Circadianas Period/genética , Fotoperíodo , Distribuição Aleatória , Núcleo Supraquiasmático/fisiologia
17.
Chronobiol Int ; 29(2): 91-102, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22324550

RESUMO

Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, it was found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0-6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6-7 h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of green fluorescent protein-positive (GFP+) cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5 mM K(+) 3 h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeo Y/farmacologia , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Ritmo Circadiano/fisiologia , Eletrofisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Proteínas Circadianas Period/genética , Potássio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia
18.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R740-50, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22218419

RESUMO

Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine whether such effects are manifest through actions on critical photic and nonphotic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (intraperitoneal) cocaine injection was evidenced by strong (60%) attenuation of light-induced phase-delay shifts of circadian locomotor activity during the early night. A nonphotic action of cocaine was apparent from its induction of 1-h circadian phase-advance shifts at midday. The serotonin receptor antagonist, metergoline, blocked shifting by 80%, implicating a serotonergic mechanism. Reverse microdialysis perfusion of the SCN with cocaine at midday induced 3.7 h phase-advance shifts. Control perfusions with lidocaine and artificial cerebrospinal fluid had little shifting effect. In complementary in vitro experiments, photic-like phase-delay shifts of the SCN circadian neuronal activity rhythm induced by glutamate application to the SCN were completely blocked by cocaine. Cocaine treatment of SCN slices alone at subjective midday, but not the subjective night, induced 3-h phase-advance shifts. Lidocaine had no shifting effect. Cocaine-induced phase shifts were completely blocked by metergoline, but not by the dopamine receptor antagonist, fluphenazine. Finally, pretreatment of SCN slices for 2 h with a low concentration of serotonin agonist (to block subsequent serotonergic phase resetting) abolished cocaine-induced phase shifts at subjective midday. These results reveal multiple effects of cocaine on adult circadian clock regulation that are registered within the SCN and involve enhanced serotonergic transmission.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Cocaína/farmacologia , Estimulação Luminosa , Transdução de Sinais/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Relógios Circadianos/fisiologia , Inibidores da Captação de Dopamina/farmacologia , Flufenazina/farmacologia , Lidocaína/farmacologia , Masculino , Metergolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Atividade Motora/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia
19.
Chronobiol Int ; 28(8): 664-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21929298

RESUMO

The PER2 clock gene modulates ethanol consumption, such that mutant mice not expressing functional mPer2 have altered circadian behavior that promotes higher ethanol intake and preference. Experiments were undertaken to characterize circadian-related behavioral effects of mPer2 deletion on ethanol intake and to explore how acamprosate (used to reduce alcohol dependence) alters diurnal patterns of ethanol intake. Male mPer2 mutant and WT (wild-type) mice were entrained to a 12:12 h light-dark (12L:12D) photocycle, and their locomotor and drinking activities were recorded. Circadian locomotor measurements confirmed that mPer2 mutants had an advanced onset of nocturnal activity of about 2 h relative to WTs, and an increased duration of nocturnal activity (p < .01). Also, mPer2 mutants preferred and consumed more ethanol and had more daily ethanol drinking episodes vs. WTs. Measurements of systemic ethanol using subcutaneous microdialysis confirmed the advanced rise in ethanol intake in the mPer2 mutants, with 24-h averages being ∼60 vs. ∼25 mM for WTs (p < .01). A 6-day regimen of single intraperitoneal (i.p.) acamprosate injections (300 mg/kg) at zeitgeber time (ZT) 10 did not alter the earlier onset of nocturnal ethanol drinking in the mPer2 mutants, but reduced the overall amplitude of drinking and preference (both p < .01). Acamprosate also reduced these parameters in WTs. These results suggest that elevated ethanol intake in mPer2 mutants may be a partial consequence of an earlier nighttime activity onset and increase in nocturnal drinking activity. The suppressive action of acamprosate on ethanol intake is not due to an altered diurnal pattern of drinking, but rather a decrease in the number of daily drinking bouts and amount of drinking per bout.


Assuntos
Dissuasores de Álcool/farmacologia , Consumo de Bebidas Alcoólicas , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Taurina/análogos & derivados , Acamprosato , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/fisiopatologia , Consumo de Bebidas Alcoólicas/prevenção & controle , Animais , Etanol/farmacocinética , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Circadianas Period/genética , Taurina/farmacologia
20.
Am J Physiol Regul Integr Comp Physiol ; 301(4): R1032-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697518

RESUMO

Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before ethanol reintroduction, mice received bilateral blank or acamprosate-containing microimplants releasing ∼50 ng/day into reward [ventral tegmental (VTA), peduculopontine tegmentum (PPT), and nucleus accumbens (NA)] and circadian [intergeniculate leaflet (IGL) and suprachiasmatic nucleus (SCN)] areas. The hippocampus was also targeted. Circadian locomotor activity was measured throughout. Ethanol intake and preference were greater in mPer2 mutants than in wild-type (WT) mice (27 g·kg(-1)·day(-1) vs. 13 g·kg(-1)·day(-1) and 70% vs. 50%, respectively; both, P < 0.05). In WTs, acamprosate in all areas, except hippocampus, suppressed ethanol intake and preference (by 40-60%) during ethanol reintroduction. In mPer2 mutants, acamprosate in the VTA, PPT, and SCN suppressed ethanol intake and preference by 20-30%. These data are evidence that acamprosate's suppression of ethanol intake and preference are manifest through actions within major reward and circadian sites.


Assuntos
Dissuasores de Álcool/farmacologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Taurina/análogos & derivados , Acamprosato , Animais , Ritmo Circadiano/fisiologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Animais , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Núcleo Tegmental Pedunculopontino/fisiologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia , Taurina/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA