Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 14(1): e0280522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598190

RESUMO

tRNAs and ribosomal RNAs are often considered stable RNAs. In contrast to this view, we recently proposed that tRNAs are degraded during amino acid starvation and drug-induced transcription inhibition. However, reevaluation of our experimental approach revealed that common RNA extraction methods suffer from alarming extraction and size biases that can lead to gross underestimation of RNA levels in starved Escherichia coli populations. Quantification of tRNAs suffers additional biases due to differing fractions of tRNAs with base modifications in growing versus starved bacteria. Applying an improved methodology, we measured tRNA levels after starvation for amino acids, glucose, phosphate, or ammonium and transcription inhibition by rifampicin. We report that tRNA levels remain largely unaffected in all tested conditions, including several days of starvation. This confirms that tRNAs are remarkably stable RNAs and serves as a cautionary tale about quantification of RNA from cells cultured outside the steady-state growth regime. rRNA, conversely, is extensively degraded during starvation. Thus, E. coli downregulates the translation machinery in response to starvation by reducing the ribosome pool through rRNA degradation, while a high concentration of tRNAs available to supply amino acids to the remaining ribosomes is maintained. IMPORTANCE We show that E. coli tRNAs are remarkably stable during several days of nutrient starvation, although rRNA is degraded extensively under these conditions. The levels of these two major RNA classes are considered to be strongly coregulated at the level of transcription. We demonstrate that E. coli can control the ratio of tRNAs per ribosome under starvation by means of differential degradation rates. The question of tRNA stability in stressed E. coli cells has become subject to debate. Our in-depth analysis of RNA quantification methods reveals hidden technical pitfalls at every step of the analysis, from RNA extraction to target detection and normalization. Most importantly, starved E. coli populations were more resilient to RNA extraction than unstarved populations. The current results underscore that the seemingly trivial task of quantifying an abundant RNA species is not straightforward for cells cultured outside the exponential growth regime.


Assuntos
Escherichia coli , RNA de Transferência , Escherichia coli/genética , Escherichia coli/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo , Ribossomos/metabolismo , RNA Ribossômico/genética
3.
Nucleic Acids Res ; 49(4): 2226-2239, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503254

RESUMO

Ribosome hibernation is a universal translation stress response found in bacteria as well as plant plastids. The term was coined almost two decades ago and despite recent insights including detailed cryo-EM structures, the physiological role and underlying molecular mechanism of ribosome hibernation has remained unclear. Here, we demonstrate that Escherichia coli hibernation factors RMF, HPF and RaiA (HFs) concurrently confer ribosome hibernation. In response to carbon starvation and resulting growth arrest, we observe that HFs protect ribosomes at the initial stage of starvation. Consistently, a deletion mutant lacking all three factors (ΔHF) is severely inhibited in regrowth from starvation. ΔHF cells increasingly accumulate 70S ribosomes harbouring fragmented rRNA, while rRNA in wild-type 100S dimers is intact. RNA fragmentation is observed to specifically occur at HF-associated sites in 16S rRNA of assembled 70S ribosomes. Surprisingly, degradation of the 16S rRNA 3'-end is decreased in cells lacking conserved endoribonuclease YbeY and exoribonuclease RNase R suggesting that HFs directly block these ribonucleases from accessing target sites in the ribosome.


Assuntos
Proteínas de Escherichia coli/fisiologia , Ribonucleases/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Carbono/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Mutação , Biossíntese de Proteínas , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/genética , Estresse Fisiológico/genética
4.
Annu Rev Genet ; 52: 321-348, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30476446

RESUMO

Protein synthesis consumes a large fraction of available resources in the cell. When bacteria encounter unfavorable conditions and cease to grow, specialized mechanisms are in place to ensure the overall reduction of costly protein synthesis while maintaining a basal level of translation. A number of ribosome-associated factors are involved in this regulation; some confer an inactive, hibernating state of the ribosome in the form of 70S monomers (RaiA; this and the following are based on Escherichia coli nomenclature) or 100S dimers (RMF and HPF homologs), and others inhibit translation at different stages in the translation cycle (RsfS, YqjD and paralogs, SRA, and EttA). Stationary phase cells therefore exhibit a complex array of different ribosome subpopulations that adjusts the translational capacity of the cell to the encountered conditions and ensures efficient reactivation of translation when conditions improve. Here, we review the current state of research regarding stationary phase-specific translation factors, in particular ribosome hibernation factors and other forms of translational regulation in response to stress conditions.


Assuntos
Escherichia coli/genética , Hibernação/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Escherichia coli/genética , Ligação Proteica , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA