Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1238130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781537

RESUMO

Majority of modern techniques for creating and optimizing the geometry of medical devices are based on a combination of computer-aided designs and the utility of the finite element method This approach, however, is limited by the number of geometries that can be investigated and by the time required for design optimization. To address this issue, we propose a generative design approach that combines machine learning (ML) methods and optimization algorithms. We evaluate eight different machine learning methods, including decision tree-based and boosting algorithms, neural networks, and ensembles. For optimal design, we investigate six state-of-the-art optimization algorithms, including Random Search, Tree-structured Parzen Estimator, CMA-ES-based algorithm, Nondominated Sorting Genetic Algorithm, Multiobjective Tree-structured Parzen Estimator, and Quasi-Monte Carlo Algorithm. In our study, we apply the proposed approach to study the generative design of a prosthetic heart valve (PHV). The design constraints of the prosthetic heart valve, including spatial requirements, materials, and manufacturing methods, are used as inputs, and the proposed approach produces a final design and a corresponding score to determine if the design is effective. Extensive testing leads to the conclusion that utilizing a combination of ensemble methods in conjunction with a Tree-structured Parzen Estimator or a Nondominated Sorting Genetic Algorithm is the most effective method in generating new designs with a relatively low error rate. Specifically, the Mean Absolute Percentage Error was found to be 11.8% and 10.2% for lumen and peak stress prediction respectively. Furthermore, it was observed that both optimization techniques result in design scores of approximately 95%. From both a scientific and applied perspective, this approach aims to select the most efficient geometry with given input parameters, which can then be prototyped and used for subsequent in vitro experiments. By proposing this approach, we believe it will replace or complement CAD-FEM-based modeling, thereby accelerating the design process and finding better designs within given constraints. The repository, which contains the essential components of the study, including curated source code, dataset, and trained models, is publicly available at https://github.com/ViacheslavDanilov/generative_design.

2.
Comput Med Imaging Graph ; 106: 102188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36867896

RESUMO

In the era of data-driven machine learning algorithms, data is the new oil. For the most optimal results, datasets should be large, heterogeneous and, crucially, correctly labeled. However, data collection and labeling are time-consuming and labor-intensive processes. In the field of medical device segmentation, present during minimally invasive surgery, this leads to a lack of informative data. Motivated by this drawback, we developed an algorithm generating semi-synthetic images based on real ones. The concept of this algorithm is to place a randomly shaped catheter in an empty heart cavity, where the shape of the catheter is generated by forward kinematics of continuum robots. Having implemented the proposed algorithm, we generated new images of heart cavities with various artificial catheters. We compared the results of deep neural networks trained purely on real datasets with respect to networks trained on both real and semi-synthetic datasets, highlighting that semi-synthetic data improves catheter segmentation accuracy. A modified U-Net trained on combined datasets performed the segmentation with a Dice similarity coefficient of 92.6 ± 2.2%, while the same model trained only on real images achieved a Dice similarity coefficient of 86.5 ± 3.6%. Therefore, using semi-synthetic data allows for the decrease of accuracy spread, improves model generalization, reduces subjectivity, shortens the labeling routine, increases the number of samples, and improves the heterogeneity.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina , Catéteres , Processamento de Imagem Assistida por Computador/métodos
3.
Sci Rep ; 12(1): 12791, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896761

RESUMO

In this study, we propose a two-stage workflow used for the segmentation and scoring of lung diseases. The workflow inherits quantification, qualification, and visual assessment of lung diseases on X-ray images estimated by radiologists and clinicians. It requires the fulfillment of two core stages devoted to lung and disease segmentation as well as an additional post-processing stage devoted to scoring. The latter integrated block is utilized, mainly, for the estimation of segment scores and computes the overall severity score of a patient. The models of the proposed workflow were trained and tested on four publicly available X-ray datasets of COVID-19 patients and two X-ray datasets of patients with no pulmonary pathology. Based on a combined dataset consisting of 580 COVID-19 patients and 784 patients with no disorders, our best-performing algorithm is based on a combination of DeepLabV3 + , for lung segmentation, and MA-Net, for disease segmentation. The proposed algorithms' mean absolute error (MAE) of 0.30 is significantly reduced in comparison to established COVID-19 algorithms; BS-net and COVID-Net-S, possessing MAEs of 2.52 and 1.83 respectively. Moreover, the proposed two-stage workflow was not only more accurate but also computationally efficient, it was approximately 11 times faster than the mentioned methods. In summary, we proposed an accurate, time-efficient, and versatile approach for segmentation and scoring of lung diseases illustrated for COVID-19 and with broader future applications for pneumonia, tuberculosis, pneumothorax, amongst others.


Assuntos
COVID-19 , Aprendizado Profundo , Algoritmos , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Raios X
4.
Inform Med Unlocked ; 28: 100835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34977331

RESUMO

The novel coronavirus 19 (COVID-19) continues to have a devastating effect around the globe, leading many scientists and clinicians to actively seek to develop new techniques to assist with the tackling of this disease. Modern machine learning methods have shown promise in their adoption to assist the healthcare industry through their data and analytics-driven decision making, inspiring researchers to develop new angles to fight the virus. In this paper, we aim to develop a CNN-based method for the detection of COVID-19 by utilizing patients' chest X-ray images. Developing upon the inclusion of convolutional units, the proposed method makes use of indirect supervision based on Grad-CAM. This technique is used in the training process where Grad-CAM's attention heatmaps support the network's predictions. Despite recent progress, scarcity of data has thus far limited the development of a robust solution. We extend upon existing work by combining publicly available data across 5 different sources and carefully annotate the comprising images across three categories: normal, pneumonia, and COVID-19. To achieve a high classification accuracy, we propose a training pipeline based on indirect supervision of traditional classification networks, where the guidance is directed by an external algorithm. With this method, we observed that the widely used, standard networks can achieve an accuracy comparable to tailor-made models, specifically for COVID-19, with one network in particular, VGG-16, outperforming the best of the tailor-made models.

5.
Nat Commun ; 10(1): 245, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651552

RESUMO

Quantum computation by non-Abelian Majorana zero modes (MZMs) offers an approach to achieve fault tolerance by encoding quantum information in the non-local charge parity states of semiconductor nanowire networks in the topological superconductor regime. Thus far, experimental studies of MZMs chiefly relied on single electron tunneling measurements, which lead to the decoherence of the quantum information stored in the MZM. As a next step towards topological quantum computation, charge parity conserving experiments based on the Josephson effect are required, which can also help exclude suggested non-topological origins of the zero bias conductance anomaly. Here we report the direct measurement of the Josephson radiation frequency in indium arsenide nanowires with epitaxial aluminium shells. We observe the 4π-periodic Josephson effect above a magnetic field of ≈200 mT, consistent with the estimated and measured topological phase transition of similar devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA