Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Helicobacter ; 29(3): e13081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717008

RESUMO

BACKGROUND: The main antibiotics used against Helicobacter pylori have been chosen empirically over time, with few preclinical studies to provide support. The rise in resistance to some of these antibiotics is prompting a reassessment of their use. This work aimed to evaluate the in vitro efficacy of 2 × 2 combinations of the most widely used antibiotics against H. pylori. MATERIALS AND METHODS: J99 reference strains and 19 clinical isolates of H. pylori with various antibiotic resistance phenotypes were used. Minimum inhibitory concentrations were carried out using the microdilution method in 96-well plates. The activity of 15 possible combinations of two antibiotics including amoxicillin, clarithromycin (CLA), levofloxacin, rifampicin, tetracycline, and metronidazole was determined for all strains by the checkerboard method. A mean fractional inhibitory concentration index (FICmean) was calculated for each combination and strain and the type of pharmacodynamic interaction was considered as synergic if FICmean ≤ 0.5, additive if 0.5 < FICmean ≤ 1, indifferent if 1 < FICmean < 4 or antagonistic if FICmean ≥ 4. RESULTS: Most of the 285 pharmacodynamic interactions tested with clinical strains were close to additivity (average FICmean = 0.89 [0.38-1.28]). No interaction was found to be antagonistic. When two antibiotics to which a strain was resistant were combined, the concentrations required to inhibit bacterial growth were higher than their respective breakpoints. CONCLUSION: The present results have shown that in vitro, the different antibiotics used in therapeutics have additive effects. The addition of the effects of two antibiotics to which a strain was resistant was not sufficient to inhibit bacterial growth. In probabilistic treatment, the choice of antibiotics to combine should therefore be based on the local epidemiology of resistance, and on susceptibility testing in the case of CLA therapy, so that at least one antibiotic to which the strain is susceptible is used.


Assuntos
Antibacterianos , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Farmacorresistência Bacteriana , Quimioterapia Combinada , Sinergismo Farmacológico
2.
Antimicrob Agents Chemother ; 67(10): e0030123, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37681977

RESUMO

In contrast to the checkerboard method, bactericidal experiments [time-kill curves (TKCs)] allow an assessment of pharmacodynamic (PD) interactions over time. However, TKCs in combination pose interpretation problems. The objective of this study was to characterize the PD interaction over time between ceftazidime/avibactam (CZA) and colistin (CST) using TKC against four multidrug-resistant Klebsiella pneumoniae susceptible to both antibiotics and expressing a widespread carbapenemase determinant KPC-3. In vitro TKCs were performed and analyzed using pharmacokinetic/pharmacodynamic (PKPD) modeling. The general pharmacodynamic interaction model was used to characterize PD interactions between drugs. The 95% confidence intervals (95%CIs) of the expected additivity and of the observed interaction were built using parametric bootstraps and compared to evaluate the in vitro PD interaction over time. Further simulations were conducted to investigate the effect of the combination at varying concentrations typically observed in patients. Regrowth was observed in TKCs at high concentrations of drugs alone [from 4 to 32× minimum inhibitory concentrations (MIC)], while the combination systematically prevented the regrowth at concentrations close to the MIC. Significant synergy or antagonism were observed under specific conditions but overall 95%CIs overlapped widely over time indicating an additive interaction between antibiotics. Moreover, simulations of typical PK profile at standard dosages indicated that the interaction should be additive in clinical conditions. The nature of the PD interaction varied with time and concentration in TKC. Against the four K. pneumoniae isolates, the bactericidal effect of CZA + CST combination was predicted to be additive and to prevent the emergence of resistance at clinical concentrations.


Assuntos
Ceftazidima , Infecções por Klebsiella , Humanos , Ceftazidima/farmacologia , Colistina/farmacologia , Klebsiella pneumoniae , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , beta-Lactamases/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico
3.
Antimicrob Agents Chemother ; 67(10): e0048023, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37695298

RESUMO

A double ampC (AmpCG183D) and ampD (AmpDH157Y) genes mutations have been identified by whole genome sequencing in a Pseudomonas aeruginosa (PaS) that became resistant (PaR) in a patient treated by ceftolozane/tazobactam (C/T). To precisely characterize the respective contributions of these mutations on the decreased susceptibility to C/T and on the parallel increased susceptibility to imipenem (IMI), mutants were generated by homologous recombination in PAO1 reference strain (PAO1- AmpCG183D, PAO1-AmpDH157Y, PAO1-AmpCG183D/AmpDH157Y) and in PaR (PaR-AmpCPaS/AmpDPaS). Sequential time-kill curve experiments were conducted on all strains and analyzed by semi-mechanistic PKPD modeling. A PKPD model with adaptation successfully described the data, allowing discrimination between initial and time-related (adaptive resistance) effects of mutations. With PAO1 and mutant-derived strains, initial EC50 values increased by 1.4, 4.1, and 29-fold after AmpCG183D , AmpDH157Y and AmpCG183D/AmpDH157Y mutations, respectively. EC50 values were increased by 320, 12.4, and 55-fold at the end of the 2 nd experiment. EC50 of PAO1-AmpCG183D/AmpDH157Y was higher than that of single mutants at any time of the experiments. Within the PaR clinical background, reversal of AmpCG183D, and AmpDH157Y mutations led to an important decrease of EC50 value, from 80.5 mg/L to 6.77 mg/L for PaR and PaR-AmpCPaS/AmpDPaS, respectively. The effect of mutations on IMI susceptibility mainly showed that the AmpCG183D mutation prevented the emergence of adaptive resistance. The model successfully described the separate and combined effect of AmpCG183D and AmpDH157Y mutations against C/T and IMI, allowing discrimination and quantification of the initial and time-related effects of mutations. This method could be reproduced in clinical strains to decipher complex resistance mechanisms.


Assuntos
Farmacorresistência Bacteriana , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/farmacologia , Cefalosporinas/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Tazobactam/farmacologia , Farmacorresistência Bacteriana/genética
4.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642996

RESUMO

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Assuntos
Fibrose Cística , Eucariotos , Humanos , Fator 2 de Elongação de Peptídeos , Inflamassomos , Citoplasma , Proteínas NLR
5.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849616

RESUMO

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
6.
Front Pharmacol ; 13: 842921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370719

RESUMO

The reduction in antimicrobial activity at high bacterial counts is a microbiological phenomenon known as the inoculum effect (IE). In a previous in vitro study, a significant IE was observed for polymyxin B (PMB) against a clinical isolate of Acinetobacter baumannii, and well described by a new pharmacokinetic-pharmacodynamic model. Few in vivo studies have investigated the impact of inoculum size on survival or antibiotic efficacy. Therefore, our objective was to confirm the influence of inoculum size of this A. baumannii clinical isolate on PMB in vivo effect over time. Pharmacokinetics and pharmacodynamics of PMB after a single subcutaneous administration (1, 15 and 40 mg/kg) were studied in a neutropenic murine thigh infection model. The impact of A. baumannii inoculum size (105, 106 and 107 CFU/thigh) on PMB efficacy was also evaluated. In vivo PMB PK was well described by a two-compartment model including saturable absorption from the subcutaneous injection site and linear elimination. The previous in vitro PD model was modified to adequately describe the decrease of PMB efficacy with increased inoculum size in infected mice. The IE was modeled as a decrease of 32% in the in vivo PMB bactericidal effect when the starting inoculum increases from 105 to 107 CFU/thigh. Although not as important as previously characterized in vitro an IE was confirmed in vivo.

7.
Antimicrob Agents Chemother ; 66(1): e0178921, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780268

RESUMO

The inoculum effect (i.e., reduction in antimicrobial activity at large starting inoculum) is a phenomenon described for various pathogens. Given that limited data exist regarding inoculum effect of Acinetobacter baumannii, we evaluated killing of A. baumannii by polymyxin B, a last-resort antibiotic, at several starting inocula and developed a pharmacokinetic-pharmacodynamic (PKPD) model to capture this phenomenon. In vitro static time-kill experiments were performed using polymyxin B at concentrations ranging from 0.125 to 128 mg/L against a clinical A. baumannii isolate at four starting inocula from 105 to 108 CFU/mL. Samples were collected up to 30 h to quantify the viable bacterial burden and were simultaneously modeled in the NONMEM software program. The expression of polymyxin B resistance genes (lpxACD, pmrCAB, and wzc), and genetic modifications were studied by RT-qPCR and DNA sequencing experiments, respectively. The PKPD model included a single homogeneous bacterial population with adaptive resistance. Polymyxin B effect was modeled as a sigmoidal Emax model and the inoculum effect as an increase of polymyxin B EC50 with increasing starting inoculum using a power function. Polymyxin B displayed a reduced activity as the starting inoculum increased: a 20-fold increase of polymyxin B EC50 was observed between the lowest and the highest inoculum. No effects of polymyxin B and inoculum size were observed on the studied genes. The proposed PKPD model successfully described and predicted the pronounced in vitro inoculum effect of A. baumannii on polymyxin B activity. These results should be further validated using other bacteria/antibiotic combinations and in vivo models.


Assuntos
Acinetobacter baumannii , Polimixina B , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia
8.
J Med Chem ; 55(22): 9914-28, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23092194

RESUMO

In this paper, we present some elements of our optimization program to decouple triclosan's specific FabI effect from its nonspecific cytotoxic component. The implementation of this strategy delivered highly specific, potent, and nonbiocidal new FabI inhibitors. We also disclose some preclinical data of one of their representatives, 83, a novel antibacterial compound active against resistant staphylococci and some clinically relevant Gram negative bacteria that is currently undergoing clinical trials.


Assuntos
Anti-Infecciosos Locais/farmacologia , Benzamidas/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Triclosan/farmacologia , Animais , Anti-Infecciosos Locais/síntese química , Benzamidas/síntese química , Células Cultivadas , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Éteres Fenílicos/síntese química , Ratos , Relação Estrutura-Atividade , Triclosan/síntese química
9.
Mol Microbiol ; 55(1): 54-64, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15612916

RESUMO

Type IV pili (Tfp) play a critical role in the pathogenic lifestyle of Neisseria meningitidis and N. gonorrhoeae, notably by facilitating bacterial attachment to human cells, but our understanding of their biogenesis, during which the fibres are assembled in the periplasm, then emerge onto the cell surface and are stabilized, remains fragmentary. We therefore sought to identify the genes required for Tfp formation in N. meningitidis by screening a genome-wide collection of mutants for those that were unable to form aggregates, another phenotype mediated by these organelles. Fifteen proteins, of which only seven were previously characterized, were found to be essential for Tfp biogenesis. One novel component, named PilW, was studied in more detail. We found that PilW is an outer-membrane protein necessary for the stabilization of the fibres but not for their assembly or surface localization, because Tfp could be restored on the surface in a pilW mutant by a mutation in the twitching motility gene pilT. However, Tfp-linked properties, including adherence to human cells, were not restored in a pilW/T mutant, which suggests that PilW is also essential for the functionality of the fibres. Together with the finding that PilW is important for the stability of PilQ multimers, our results extend the current model for Tfp biogenesis by suggesting that a multiprotein machinery in the outer-membrane is involved in the terminal stage of Tfp biogenesis during which growing fibres are not only stabilized, but also become perfectly functional.


Assuntos
Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Neisseria meningitidis/genética , Células Cultivadas , Elementos de DNA Transponíveis/genética , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/ultraestrutura , Genes Bacterianos , Humanos , Mutação , Neisseria meningitidis/fisiologia , Neisseria meningitidis/ultraestrutura , Ligação Proteica
10.
Mol Microbiol ; 55(1): 65-77, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15612917

RESUMO

The attachment of pathogenic Neisseria species to human cells, in which type IV pili (Tfp) play a key but incompletely defined role, depends on the ability of these bacteria to establish contacts with the target cells but also interbacterial interactions. In an effort to improve our understanding of the molecular mechanisms of N. meningitidis adherence to human cells, we screened a collection of defined mutants for those presenting reduced attachment to a human cell line. Besides underscoring the central role of Tfp in this process, this analysis led to the identification of mutants interrupted in a novel gene termed pilX, that displayed an adherence as impaired as that of a non-piliated mutant but quantitatively and qualitatively unaltered fibres. Moreover, the pilX gene, which encodes a pilin-like protein that copurifies with Tfp fibres, was also found to be essential for bacterial aggregation. We provide here several piece of evidence suggesting that PilX has intrinsic aggregative but no adhesive properties and that the reduced numbers of adherent bacteria seen with a pilX mutant result from the absence of interbacterial interactions. These data extend the current model for Tfp-facilitated adherence of N. meningitidis to human cells by suggesting that the pili lead to an increase in net initial adherence primarily by mediating a cooperation between the bacteria, which is supported by the finding that a major effect on initial adherence could be observed in a wild-type (WT) genetic background after a mechanical removal of the bacterial aggregates.


Assuntos
Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/fisiologia , Aderência Bacteriana , Células Cultivadas , Elementos de DNA Transponíveis/genética , Proteínas de Fímbrias/análise , Proteínas de Fímbrias/isolamento & purificação , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/ultraestrutura , Genes Bacterianos , Humanos , Mutação , Neisseria meningitidis/genética , Neisseria meningitidis/ultraestrutura , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA