Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Light Sci Appl ; 13(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195653

RESUMO

Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor's ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.

2.
Nat Commun ; 14(1): 8197, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081807

RESUMO

mmWave devices can broadcast multiple spatially-separated data streams simultaneously in order to increase data transfer rates. Data transfer can, however, be compromised by interference. Photonic blind interference cancellation systems offer a power-efficient means of mitigating interference, but previous demonstrations of such systems have been limited by high latencies and the need for regular calibration. Here, we demonstrate real-time photonic blind interference cancellation using an FPGA-photonic system executing a zero-calibration control algorithm. Our system offers a greater than 200-fold reduction in latency compared to previous work, enabling sub-second cancellation weight identification. We further investigate key trade-offs between system latency, power consumption, and success rate, and we validate sub-Nyquist sampling for blind interference cancellation. We estimate that photonic interference cancellation can reduce the power required for digitization and signal recovery by greater than 74 times compared to the digital electronic alternative.

3.
Nanotechnology ; 34(39)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37321201

RESUMO

Convolutions are one of the most critical signal and image processing operations. From spectral analysis to computer vision, convolutional filtering is often related to spatial information processing involving neighbourhood operations. As convolution operations are based around the product of two functions, vectors or matrices, dot products play a key role in the performance of such operations; for example, advanced image processing techniques require fast, dense matrix multiplications that typically take more than 90% of the computational capacity dedicated to solving convolutional neural networks. Silicon photonics has been demonstrated to be an ideal candidate to accelerate information processing involving parallel matrix multiplications. In this work, we experimentally demonstrate a multiwavelength approach with fully integrated modulators, tunable filters as microring resonator weight banks, and a balanced detector to perform matrix multiplications for image convolution operations. We develop a scattering matrix model that matches the experiment to simulate large-scale versions of these photonic systems with which we predict performance and physical constraints, including inter-channel cross-talk and bit resolution.

4.
Nat Commun ; 14(1): 1107, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849533

RESUMO

The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its "blindness" aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.

5.
Opt Express ; 30(11): 19300-19310, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221711

RESUMO

We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals, and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulses collect samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the under-sampled signals are the same as the statistical properties of the original signals. The linear power range measurement shows that the sampling system with ultra-narrow optical pulse achieves a 30dB power dynamic range.

6.
Nanotechnology ; 32(1): 012002, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679577

RESUMO

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.

7.
Opt Lett ; 45(23): 6494-6497, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258844

RESUMO

Microwave communications have witnessed an incipient proliferation of multi-antenna and opportunistic technologies in the wake of an ever-growing demand for spectrum resources, while facing increasingly difficult network management over widespread channel interference and heterogeneous wireless broadcasting. Radio frequency (RF) blind source separation (BSS) is a powerful technique for demixing mixtures of unknown signals with minimal assumptions, but relies on frequency dependent RF electronics and prior knowledge of the target frequency band. We propose photonic BSS with unparalleled frequency agility supported by the tremendous bandwidths of photonic channels and devices. Specifically, our approach adopts an RF photonic front-end to process RF signals at various frequency bands within the same array of integrated microring resonators, and implements a novel two-step photonic BSS pipeline to reconstruct source identities from the reduced dimensional statistics of front-end output. We verify the feasibility and robustness of our approach by performing the first proof-of-concept photonic BSS experiments on mixed-over-the-air RF signals across multiple frequency bands. The proposed technique lays the groundwork for further research in interference cancellation, radio communications, and photonic information processing.

8.
Opt Lett ; 45(17): 4819-4822, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870866

RESUMO

We experimentally demonstrate all-optical reconfigurable nonlinear activation functions in a cavity-loaded Mach-Zehnder interferometer device on a silicon photonics platform, via the free-carrier dispersion effect. Our device is programmable to generate various nonlinear activation functions, including sigmoid, radial-basis, clamped rectified linear unit, and softplus, with tunable thresholds. We simulate benchmark tasks such as XOR and MNIST handwritten digit classifications with experimentally measured activation functions and obtain accuracies of 100% and 94%, respectively. Our device can serve as nonlinear units in photonic neural networks, while its nonlinear transfer function can be flexibly programmed to optimize the performance of different neuromorphic tasks.

9.
Opt Express ; 28(8): 11692-11704, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403675

RESUMO

Integration of active electronics into photonic systems is necessary for large-scale photonic integration. While heterogeneous integration leverages high-performance electronics, a monolithic scheme can coexist by aiding the electronic processing, improving overall efficiency. We report a lateral bipolar junction transistor on a commercial silicon photonics foundry process. We achieved a DC current gain of 10 with a Darlington configuration, and using measured S-parameters for a single BJT, the available AC gain was at least 3dB for signal frequencies up to 1.1 GHz. Our single BJT demonstrated a transimpedance of 3.2mS/µm, which is about 70 times better than existing literature.

10.
Opt Lett ; 45(8): 2287-2290, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287215

RESUMO

We theoretically study the effect of free-carrier lifetime on processing speed and strength of nonlinearity, pertaining to our all-optical thresholder. We find that optimal device performance necessitates tuning lifetime while optimizing for both speed and nonlinearity. We also experimentally demonstrate device processing speed improvement from 400 Mbps to 2.5 Gbps by incorporating PN-junction mediated free-carrier lifetime tuning mechanism. Our study on the significance of free-carrier lifetime is universally applicable to any optical signal processing system reliant on silicon photonic nonlinearities.

11.
Opt Express ; 28(2): 1827-1844, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121887

RESUMO

Independent component analysis (ICA) is a general-purpose technique for analyzing multi-dimensional data to reveal the underlying hidden factors that are maximally independent from each other. We report the first photonic ICA on mixtures of unknown signals by employing an on-chip microring (MRR) weight bank. The MRR weight bank performs so-called weighted addition (i.e., multiply-accumulate) operations on the received mixtures, and outputs a single reduced-dimensional representation of the signal of interest. We propose a novel ICA algorithm to recover independent components solely based on the statistical information of the weighted addition output, while remaining blind to not only the original sources but also the waveform information of the mixtures. We investigate both channel separability and near-far problems, and our two-channel photonic ICA experiment demonstrates our scheme holds comparable performance with the conventional software-based ICA method. Our numerical simulation validates the fidelity of the proposed approach, and studies noise effects to identify the operating regime of our method. The proposed technique could open new domains for future research in blind source separation, microwave photonics, and on-chip information processing.

12.
Opt Express ; 27(22): 32096-32110, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684428

RESUMO

We propose and experimentally demonstrate an approach to generate and distribute secret keys over optical fiber communication infrastructure. Mach-Zehnder interferometers (MZIs) are adopted for key generation by transferring the environmental noise to random optical signals. A novel combination of wideband optical noise and an asymmetric MZI structure enables the secret keys to be securely transmitted and exchanged over public fiber links without being detected. We experimentally demonstrate this system and show reliable performance: keys are generated at the rate of 502 bit/s, and are successfully exchanged between two parties over a 10 km optical fiber with a bit error of ∼ 0.3%. System security analysis is performed by corroborating our experimental findings with simulations. The results show that our system can protect the key distribution under different attacks, attributed to wideband optical noise and asymmetric MZI structures. Compared to the previous schemes based on distributed MZIs, our scheme exploits localized MZI which provides twofold advantages. Firstly, the key generation rate can be increased by a factor of 5.7 at a negligible additional cost. Secondly, the system becomes robust to, in particular, active intrusion attack. The proposed system is a reliable and cost-effective solution for key establishment, and is compatible with the existing optical fiber communication infrastructure.

13.
Opt Express ; 27(13): 18329-18342, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252778

RESUMO

Photonic principal component analysis (PCA) enables high-performance dimensionality reduction in wideband analog systems. In this paper, we report a photonic PCA approach using an on-chip microring (MRR) weight bank to perform weighted addition operations on correlated wavelength-division multiplexed (WDM) inputs. We are able to configure the MRR weight bank with record-high accuracy and precision, and generate multi-channel correlated input signals in a controllable manner. We also consider the realistic scenario in which the PCA procedure remains blind to the waveforms of both the input signals and weighted addition output, and propose a novel PCA algorithm that is able to extract principal components (PCs) solely based on the statistical information of the weighted addition output. Our experimental demonstration of two-channel photonic PCA produces PCs holding consistently high correspondence to those computed by a conventional software-based PCA method. Our numerical simulation further validates that our scheme can be generalized to high-dimensional (up to but not limited to eight-channel) PCA with good convergence. The proposed technique could bring new solutions to problems in microwave communications, ultrafast control, and on-chip information processing.

14.
Opt Express ; 27(4): 5181-5191, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876120

RESUMO

Photonic neural networks benefit from both the high-channel capacity and the wave nature of light acting as an effective weighting mechanism through linear optics. Incorporating a nonlinear activation function by using active integrated photonic components allows neural networks with multiple layers to be built monolithically, eliminating the need for energy and latency costs due to external conversion. Interferometer-based modulators, while popular in communications, have been shown to require more area than absorption-based modulators, resulting in a reduced neural network density. Here, we develop a model for absorption modulators in an electro-optic fully connected neural network, including noise, and compare the network's performance with the activation functions produced intrinsically by five types of absorption modulators. Our results show the quantum well absorption modulator-based electro-optic neuron has the best performance allowing for 96% prediction accuracy with 1.7×10-12 J/MAC excluding laser power when performing MNIST classification in a 2 hidden layer feed-forward photonic neural network.

15.
Opt Express ; 26(20): 26422-26443, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469730

RESUMO

Microring weight banks present novel opportunities for reconfigurable, high-performance analog signal processing in photonics. Controlling microring filter response is a challenge due to fabrication variations and thermal sensitivity. Prior work showed continuous weight control of multiple wavelength-division multiplexed signals in a bank of microrings based on calibration and feedforward control. Other prior work has shown resonance locking based on feedback control by monitoring photoabsorption-induced changes in resistance across in-ring photoconductive heaters. In this work, we demonstrate continuous, multi-channel control of a microring weight bank with an effective 5.1 bits of accuracy on 2Gbps signals. Unlike resonance locking, the approach relies on an estimate of filter transmission versus photo-induced resistance changes. We introduce an estimate still capable of providing 4.2 bits of accuracy without any direct transmission measurements. Furthermore, we present a detailed characterization of this response for different values of carrier wavelength offset and power. Feedback weight control renders tractable the weight control problem in reconfigurable analog photonic networks.

16.
Opt Lett ; 43(15): 3802-3805, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067683

RESUMO

Neocortical systems encode information in electrochemical spike timings, not just mean firing rates. Learning and memory in networks of spiking neurons is achieved by the precise timing of action potentials that induces synaptic strengthening (with excitation) or weakening (with inhibition). Inhibition should be incorporated into brain-inspired spike processing in the optical domain to enhance its information-processing capability. We demonstrate the simultaneous excitatory and inhibitory dynamics in an excitable (i.e., a pulsed) laser neuron, both numerically and experimentally. We investigate the bias strength effect, inhibitory strength effect, and excitatory and inhibitory input timing effect, based on the simulation platform of an integrated graphene excitable laser. We further corroborate these analyses with proof-of-principle experiments utilizing a fiber-based graphene excitable laser, where we introduce inhibition by directly modulating the gain of the laser. This technology may potentially open novel spike-processing functionality for future neuromorphic photonic systems.


Assuntos
Fenômenos Eletrofisiológicos/efeitos da radiação , Lasers , Modelos Neurológicos , Neocórtex/citologia , Neocórtex/fisiologia , Neocórtex/efeitos da radiação , Neurônios/citologia , Neurônios/efeitos da radiação , Fatores de Tempo
17.
Opt Lett ; 43(10): 2276-2279, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762571

RESUMO

Weighted addition is an elemental multi-input to single-output operation that can be implemented with high-performance photonic devices. Microring (MRR) weight banks bring programmable weighted addition to silicon photonics. Prior work showed that their channel limits are affected by coherent inter-channel effects that occur uniquely in weight banks. We fabricate two-pole designs that exploit this inter-channel interference in a way that is robust to dynamic tuning and fabrication variation. Scaling analysis predicts a channel count improvement of 3.4-fold, which is substantially greater than predicted by incoherent analysis used in conventional MRR devices. Advances in weight bank design expand the potential of reconfigurable analog photonic networks and multivariate microwave photonics.

18.
Sci Rep ; 7(1): 7430, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784997

RESUMO

Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

19.
Sci Rep ; 6: 36071, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804993

RESUMO

Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

20.
Opt Express ; 24(8): 8895-906, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137322

RESUMO

We demonstrate 4-channel, 2GHz weighted addition in a silicon microring filter bank. Accurate analog weight control becomes more difficult with increasing number of channels, N, as feedback approaches become impractical and brute force feedforward approaches take O(2N) calibration measurements in the presence of inter-channel dependence. We introduce model-based calibration techniques for thermal cross-talk and cross-gain saturation, which result in a scalable O(N) calibration routine and 3.8 bit feedforward weight accuracy on every channel. Practical calibration routines are indispensible for controlling large-scale microring systems. The effect of thermal model complexity on accuracy is discussed. Weighted addition based on silicon microrings can apply the strengths of photonic manufacturing, wideband information processing, and multiwavelength networks towards new paradigms of ultrafast analog distributed processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA