Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Blood ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316649

RESUMO

There are few options for patients with relapse/refractory B-cell acute lymphoblastic leukemia (B-ALL), thus this is a major area of unmet medical need. Here, we reveal that inclusion of a poison exon in RBM39, which could be induced both by CDK9 or CDK9 independent CMGC (cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, CDC-like kinases) kinase inhibition, is recognized by the nonsense-mediated mRNA decay (NMD) pathway for degradation. Targeting this poison exon in RBM39 with CMGC inhibitors lead to protein downregulation and inhibition of ALL growth, particularly in relapse/refractory B-ALL. Mechanistically, disruption of co-transcriptional splicing by inhibition of CMGC kinases including DYRK1A, or inhibition of CDK9, which phosphorylate the C-terminal domain of RNA polymerase II (Pol II), results in alteration of SF3B1 and Pol II association. Disruption of SF3B1 and transcriptional elongation complex alters Pol II pausing, which promotes the inclusion of a poison exon in RBM39. Moreover, RBM39 ablation suppresses the growth of human B-ALL, and targeting RBM39 with sulfonamides, which degrade RBM39 protein, showed strong anti-tumor activity in preclinical models. Our data reveal that relapse/refractory B-ALL is susceptible to pharmacologic and genetic inhibition of RBM39 and provide two potential strategies to target this axis.

2.
Stem Cell Res ; 81: 103532, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276527

RESUMO

Induced pluripotent stem cells (iPSCs) harboring patient derived SAMD9 mutation offer a unique platform to study the multi-organ involvement observed in this rare disease, referred to as myelodysplasia, infections, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy (MIRAGE) syndrome. The pluripotent nature of iPSCs allows in vitro differentiation into various somatic cell types representing multiple organ systems affected in SAMD9-mutated patients. Hence, in this paper, we present a CRISPR/Cas9-engineered iPSC model carrying SAMD9 c.2948T>G, p.I983S mutation previously reported in two patients with severe MIRAGE syndrome.

3.
PLoS Biol ; 22(9): e3002760, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226322

RESUMO

53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids. Dynamic phosphorylation of 53BP1-serine 25 controls 53BP1 target genes governing neuronal differentiation and function, cellular response to stress, and apoptosis. Mechanistically, ATM and RNF168 govern 53BP1's binding to gene loci to directly affect gene regulation, especially at genes for neuronal differentiation and maturation. 53BP1 serine 25 phosphorylation effectively impedes its binding to bivalent or H3K27me3-occupied promoters, especially at genes regulating H3K4 methylation, neuronal functions, and cell proliferation. Beyond 53BP1, ATM-dependent phosphorylation displays wide-ranging effects, regulating factors in neuronal differentiation, cytoskeleton, p53 regulation, as well as key signaling pathways such as ATM, BDNF, and WNT during cortical organoid differentiation. Together, our data suggest that the interplay between 53BP1 and ATM orchestrates essential genetic programs for cell morphogenesis, tissue organization, and developmental pathways crucial for human cortical development.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Organoides , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Organoides/metabolismo , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Fosforilação , Dano ao DNA , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Reparo do DNA , Neurogênese/genética , Neurônios/metabolismo , Transdução de Sinais
4.
bioRxiv ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39211123

RESUMO

ZFTA-RELA is the most recurrent genetic alteration seen in pediatric supratentorial ependymoma (EPN) and is sufficient to initiate tumors in mice. Despite ZFTA-RELA's potent oncogenic potential, ZFTA-RELA gene fusions are observed exclusively in childhood EPN, with tumors located distinctly in the supratentorial region of the central nervous system (CNS). We hypothesized that specific chromatin modules accessible during brain development would render distinct cell lineage programs at direct risk of transformation by ZFTA-RELA. To this end, we performed combined single cell ATAC and RNA-seq analysis (scMultiome) of the developing mouse forebrain as compared to ZR-driven mouse and human EPN. We demonstrate that specific developmental lineage programs present in radial glial cells and regulated by Plagl family transcription factors are at risk of neoplastic transformation. Binding of this chromatin network by ZFTA-RELA or other PLAGL family motif targeting fusion proteins leads to persistent chromatin accessibility at oncogenic loci and oncogene expression. Cross-species analysis of mouse and human EPN reveals significant cell type heterogeneity mirroring incomplete neurogenic and gliogenic differentiation, with a small percentage of cycling intermediate progenitor-like cells that establish a putative tumor cell hierarchy. In vivo lineage tracing studies reveal single neoplastic clones that aggressively dominate tumor growth and establish the entire EPN cellular hierarchy. These findings unravel developmental epigenomic states critical for fusion oncoprotein driven transformation and elucidate how these states continue to shape tumor progression. HIGHLIGHTS: 1. Specific chromatin modules accessible during brain development render distinct cell lineage programs at risk of transformation by pediatric fusion oncoproteins.2. Cross-species single cell ATAC and RNA (scMultiome) of mouse and human ependymoma (EPN) reveals diverse patterns of lineage differentiation programs that restrain oncogenic transformation.3. Early intermediate progenitor-like EPN cells establish a tumor cell hierarchy that mirrors neural differentiation programs.4. ZFTA-RELA transformation is compatible with distinct developmental epigenetic states requiring precise 'goldilocks' levels of fusion oncoprotein expression.5. Dominant tumor clones establish the entire EPN cellular hierarchy that reflects normal gliogenic and neurogenic differentiation programs.

5.
Nat Commun ; 15(1): 7303, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181868

RESUMO

Genes encoding subunits of SWI/SNF (BAF) chromatin remodeling complexes are mutated in nearly 25% of cancers. To gain insight into the mechanisms by which SWI/SNF mutations drive cancer, we contributed ten rhabdoid tumor (RT) cell lines mutant for SWI/SNF subunit SMARCB1 to a genome-scale CRISPR-Cas9 depletion screen performed across 896 cell lines. We identify PHF6 as specifically essential for RT cell survival and demonstrate that dependency on Phf6 extends to Smarcb1-deficient cancers in vivo. As mutations in either SWI/SNF or PHF6 can cause the neurodevelopmental disorder Coffin-Siris syndrome, our findings of a dependency suggest a previously unrecognized functional link. We demonstrate that PHF6 co-localizes with SWI/SNF complexes at promoters, where it is essential for maintenance of an active chromatin state. We show that in the absence of SMARCB1, PHF6 loss disrupts the recruitment and stability of residual SWI/SNF complex members, collectively resulting in the loss of active chromatin at promoters and stalling of RNA Polymerase II progression. Our work establishes a mechanistic basis for the shared syndromic features of SWI/SNF and PHF6 mutations in CSS and the basis for selective dependency on PHF6 in SMARCB1-mutant cancers.


Assuntos
Micrognatismo , Regiões Promotoras Genéticas , Proteínas Repressoras , Tumor Rabdoide , Proteína SMARCB1 , Fatores de Transcrição , Animais , Humanos , Masculino , Camundongos , Anormalidades Múltiplas , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Sistemas CRISPR-Cas , Face/anormalidades , Deformidades Congênitas do Pé/genética , Deformidades Congênitas do Pé/metabolismo , Deformidades Congênitas da Mão , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Micrognatismo/genética , Micrognatismo/metabolismo , Mutação , Pescoço/anormalidades , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/metabolismo , Proteína SMARCB1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
6.
Cell Rep ; 43(8): 114503, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39018245

RESUMO

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.


Assuntos
Plasticidade Neuronal , Tálamo , Humanos , Tálamo/fisiologia , Tálamo/citologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Sinapses/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Organoides/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo
8.
J Med Chem ; 67(14): 11868-11884, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38973320

RESUMO

Despite significant advances over recent years, the treatment of T cell acute lymphoblastic leukemia (T-ALL) remains challenging. We have recently shown that a subset of T-ALL cases exhibited constitutive activation of the lymphocyte-specific protein tyrosine kinase (LCK) and were consequently responsive to treatments with LCK inhibitors and degraders such as dasatinib and dasatinib-based PROTACs. Here we report the design, synthesis and in vitro/vivo evaluation of SJ45566, a potent and orally bioavailable LCK PROTAC.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Humanos , Administração Oral , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animais , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Relação Estrutura-Atividade
9.
Res Sq ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38853928

RESUMO

3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions for a MYC-driven murine liver cancer model. We identify over 600 shared essential genes and additional context-specific fitness genes and pathways. Knockout of the VHL-HIF1 pathway results in incompatible fitness defects under normoxia vs. 1% oxygen or 3D culture conditions. Moreover, deletion of each of the mitochondrial respiratory electron transport chain complex has distinct fitness outcomes. Notably, multicellular organogenesis signaling pathways including TGFb-SMAD specifically constrict the uncontrolled cell proliferation in 3D while inactivation of epigenetic modifiers ( Bcor , Kmt2d , Mettl3 and Mettl14 ) has opposite outcomes in 2D vs. 3D. We further identify a 3D-dependent synthetic lethality with partial loss of Prmt5 due to a reduction of Mtap expression resulting from 3D-specific epigenetic reprogramming. Our study highlights unique epigenetic, metabolic and organogenesis signaling dependencies under different cellular settings.

10.
Res Sq ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38883748

RESUMO

Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aß since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aß assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aß40 and Aß42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdkgene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aß and Aß-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.

11.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38856684

RESUMO

Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.


Assuntos
Cílios , Proteínas Hedgehog , Prostaglandinas , Transdução de Sinais , Animais , Camundongos , Cílios/metabolismo , AMP Cíclico/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos Knockout , Prostaglandinas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética
12.
Cell ; 187(15): 4061-4077.e17, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38878777

RESUMO

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.


Assuntos
Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , NAD , Animais , Camundongos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , NAD/metabolismo , Humanos , Imunidade Inata , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Transdução de Sinais , Células HEK293 , Inflamassomos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Receptores Toll-Like/metabolismo , Masculino , Citocinas/metabolismo , Proteínas de Ligação ao Cálcio
13.
BMC Biol ; 22(1): 122, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807188

RESUMO

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Assuntos
Fosfoproteínas Fosfatases , Proteína Serina-Treonina Quinases de Interação com Receptores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Necroptose , Imunidade Inata
14.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798351

RESUMO

Background: Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods: To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results: Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions: These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points: Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study: This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options.

15.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798584

RESUMO

Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo consolidation therapy-a discrepancy that has never been explained. To investigate this, we treated a large cohort of neuroblastoma cell lines with RA and observed that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation. We conducted genome-wide CRISPR knockout screens under RA treatment, which identified BMP signaling as controlling the apoptosis/senescence vs differentiation cell fate decision and determining RA's overall potency. We then discovered that BMP signaling activity is markedly higher in neuroblastoma patient samples at bone marrow metastatic sites, providing a plausible explanation for RA's ability to clear neuroblastoma cells specifically from the bone marrow, seemingly mimicking interactions between BMP and RA during normal development.

16.
Nat Commun ; 15(1): 3681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693155

RESUMO

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Assuntos
Farmacogenética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética , Linhagem Celular Tumoral , Vincristina/uso terapêutico , Vincristina/farmacologia , Polimorfismo de Nucleotídeo Único , Alelos , Cromatina/metabolismo , Cromatina/genética , Transativadores/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
17.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585889

RESUMO

The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.

19.
Nature ; 628(8007): 442-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538798

RESUMO

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Assuntos
Complexos Multiproteicos , Mutação , Neoplasias , Proteína SMARCB1 , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Edição de Genes , Neoplasias/genética , Neoplasias/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteólise , Ubiquitina/metabolismo
20.
Leukemia ; 38(5): 991-1002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454121

RESUMO

MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Mutação , Proteínas Proto-Oncogênicas , Proteína 1 Parceira de Translocação de RUNX1 , Animais , Humanos , Camundongos , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos Knockout , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA