Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893994

RESUMO

The presented work considers the influence of the hafnium and molybdenum to zirconium ratio of Ti20Ta20Nb20(HfMo)20-xZrx (where x = 0, 5, 10, 15, 20 at.%) high-entropy alloys in an as-cast state for potential biomedical applications. The current research continues with our previous results of hafnium's and molybdenum's influence on a similar chemical composition. In the presented study, the microstructure, selected mechanical properties, and corrosion resistance were investigated. The phase formation thermodynamical calculations were also applied to predict solid solution formation after solidification. The calculations predicted the presence of multi-phase, body-centred cubic phases, confirmed using X-ray diffraction and scanning electron microscopy. The chemical composition analysis showed the segregation of alloying elements. Microhardness measurements revealed a decrease in microhardness with increased zirconium content in the studied alloys. The corrosion resistance was determined in Ringer's solution to be higher than that of commercially applied biomaterials. The comparison of the obtained results with previously reported data is also presented and discussed in the presented study.

2.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837086

RESUMO

The presented work aimed to investigate the influence of the hafnium/(zirconium and molybdenum) ratio on the microstructure, microhardness and corrosion resistance of Ti20Ta20Nb20(ZrMo)20-xHfx (where x = 0, 5, 10, 15 and 20 at.%) high entropy alloys in an as-cast state produced from elemental powder and obtained via the vacuum arc melting technique. All studied alloys contained only biocompatible elements and were chosen based on the thermodynamical calculations of phase formation predictions after solidification. Thermodynamical calculations predicted the presence of multi-phase, body-centered cubic phases, which were confirmed using X-ray diffraction and scanning electron microscopy. Segregation of alloying elements was recorded using elemental distribution maps. A decrease in microhardness with an increase in hafnium content in the studied alloys was revealed (512-482 HV1). The electrochemical measurements showed that the studied alloys exhibited a high corrosion resistance in a simulated body fluid environment (breakdown potential 4.60-5.50 V vs. SCE).

3.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676381

RESUMO

The crystallization kinetics and structure evolution during annealing of the Ni45.5Co4.5Mn36.6In13.4 (at. %) powders produced by mechanical alloying (MA) was investigated. After 70 h and 100 h of MA, the powder consisted of a mixture of amorphous and nanocrystalline body-centered cubic (bcc) phases. We observed the relaxation in the as-received powder. The relaxation temperature (Tre) increases logarithmically with the annealing time. Annealing above 440 °C results in (1) ordering of L21, (2) dissolution of the residual Ni and Mn, (3) tetragonal MnNi phase formation and (4) γ phases precipitation. The activation energies of the B2 → L21 and Mn (α-Mn) → MnNi (P4/mmm) transformations were calculated.

4.
Mol Pharm ; 20(1): 641-649, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533661

RESUMO

This study reports the application of hierarchical porous monoliths as carriers for controlled and dose-adjustable release of model pharmaceutical (dexketoprofen, DEX). The synthesis and detailed characterization of the hierarchical porous scaffolds are provided before and after the adsorption of three doses of DEX─a widely used nonsteroidal anti-inflammatory drug. The drug incorporated in the mesopores of silica was stabilized in an amorphous state, while the presence of macropores provided sufficient space for drug crystallization as we demonstrated via a combination of powder X-ray diffraction, differential scanning calorimetry, and imaging techniques (scanning electron microscopy and EDX analysis). Drug release from silica matrices was tested, and a mechanistic model of this release based on the Fick diffusion equation was proposed. The hierarchical structure of the carrier, due to the presence of micrometric macropores and nanometric mesopores, turned out to be critical for the control of the drug phase and drug release from the monoliths. It was found that at low drug content, the presence of an amorphous component in the pores promoted the rapid release of the drug, while at higher drug contents, the presence of macropores favored the crystallization of DEX, which naturally slowed down its release. Both the hierarchical porous structure and the control of the drug phase (amorphous and/or crystalline) were proven important for adjustable (fast or prolonged) release kinetics, desirable for effective pharmacotherapy and patient compliance. Therefore, the developed materials may serve as a versatile formulation platform for the smart manipulation of drug release kinetics.


Assuntos
Portadores de Fármacos , Dióxido de Silício , Humanos , Solubilidade , Dióxido de Silício/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Difração de Raios X , Comprimidos/química , Porosidade , Varredura Diferencial de Calorimetria
5.
Materials (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009538

RESUMO

The presented work was focused on investigating the influence of the (hafnium and zirconium)/molybdenum ratio on the microstructure and properties of Ti20Ta20Nb20(ZrHf)20-xMox (where: x = 0, 5, 10, 15, 20 at.%) high entropy alloys in an as-cast state. The designed chemical composition was chosen due to possible future biomedical applications. Materials were obtained from elemental powders by vacuum arc melting technique. Phase analysis revealed the presence of dual body-centered cubic phases. X-ray diffraction showed the decrease of lattice parameters of both phases with increasing molybdenum concentration up to 10% of molybdenum and further increase of lattice parameters. The presence of two-phase matrix microstructure and hafnium and zirconium precipitates was proved by scanning and transmission electron microscopy observation. Mechanical property measurements revealed decreased micro- and nanohardness and reduced Young's modulus up to 10% of Mo content, and further increased up to 20% of molybdenum addition. Additionally, corrosion resistance measurements in Ringers' solution confirmed the high biomedical ability of studied alloys due to the presence of stable oxide layers.

6.
Materials (Basel) ; 14(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567663

RESUMO

Magnetic nanocomposites SmCo5/α-Fe were synthesized mechanically by high-energy ball milling (HEBM) from SmCo5 and 5%wt. of α-Fe powders. The X-ray diffraction analysis reveals the hexagonal 1:5 phase as the main one accompanied by the cubic α-Fe phase and 2:17 rhombohedral as the secondary phase. The content of each detected phase is modified throughout the synthesis duration. A significant decrease in crystallite size with a simultaneous increase in lattice straining is observed. A simultaneous gradual reduction in particle size is noted from the microstructural analysis. Magnetic properties reveal non-linear modification of magnetic parameters associated with the strength of the exchange coupling induced by various duration times of mechanical synthesis. The highest value of the maximum energy product (BH)max at room temperature is estimated for samples milled for 1 and 6 h. The intermediate mixed-valence state of Sm ions is confirmed by electronic structure analysis. An increase in the Co magnetic moment versus the milling time is evidenced based on the performed fitting of the Co3s core level lines.

7.
J Nanopart Res ; 17: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25620882

RESUMO

Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm3/h, to give 3-24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10-20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer-Dinegar model of NPs' formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA