Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 299(12): 1718-1733, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27870344

RESUMO

Relatively few assessments of cranial biomechanics formally take into account variation in the material properties of cranial cortical bone. Our aim was to characterize the elastic properties of chimpanzee craniofacial cortical bone and compare these to the elastic properties of dentate human craniofacial cortical bone. From seven cranial regions, 27 cylindrical samples were harvested from each of five chimpanzee crania. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived using modified equations of Hooke's law in a Mathcad program. Consistent orientations among individuals were observed in the zygomatic arch and alveolus. The density of cortical bone showed significant regional variation (P < 0.001). The elastic moduli demonstrated significant differences between sites, and a distinct pattern where E3 > E2 > E1 . Shear moduli were significantly different among regions (P < 0.001). The pattern by which chimpanzee cranial cortical bone varies in elastic properties resembled that seen in humans, perhaps suggesting that the elastic properties of craniofacial bone in fossil hominins can be estimated with at least some degree of confidence. Anat Rec, 299:1718-1733, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Osso Cortical/fisiologia , Módulo de Elasticidade , Ossos Faciais/fisiologia , Crânio/fisiologia , Animais , Densidade Óssea/fisiologia , Pan troglodytes , Zigoma/fisiologia
2.
Nat Commun ; 7: 10596, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853550

RESUMO

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Assuntos
Força de Mordida , Simulação por Computador , Dieta , Hominidae , Arcada Osseodentária/fisiologia , Desgaste dos Dentes , Animais , Alimentos , Fósseis , Dente Molar , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA