RESUMO
Deleted in Liver Cancer 1 (DLC1) is a tumor suppressor whose allele is lost in 50% of liver, breast, lung and 70% of colon cancers. Here, we show that the transcriptional coactivators Megakaryoblastic Leukemia 1 and 2 (MKL1/2) are constitutively localized to the nucleus in hepatocellular and mammary carcinoma cells that lack DLC1. Moreover, DLC1 loss and MKL1 nuclear localization correlate in primary human hepatocellular carcinoma. Nuclear accumulation of MKL1 in DLC1-deficient cancer cells is accomplished by activation of the RhoA/actin signaling pathway and concomitant impairment of MKL1 phosphorylation, which results in constitutive activation of MKL1/2 target genes. We provide evidence that MKL1/2 mediates cancerous transformation in DLC1-deficient hepatocellular and mammary carcinoma cells. Depletion of MKL1/2 suppresses cell migration, cell proliferation and anchorage-independent cell growth induced by DLC1 loss.
Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Neoplasias da Mama/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Neoplasias Hepáticas/genética , Transdução de Sinais , Transativadores , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Presenilin (PS) proteins facilitate endoproteolysis of selected type I transmembrane proteins such as the Alzheimer's disease (AD) associated beta-Amyloid precursor protein (beta APP) and Notch. beta APP is cleaved within its transmembrane domain by an aspartyl protease activity termed gamma-secretase, which may be identical with PS1 and PS2. Notch also undergoes a PS-dependent intramembraneous proteolysis. A similar gamma-secretase-like cleavage may also occur with IRE1 and ATF6, two signaling molecules of the unfolded protein response (UPR) that may require PSs for their activation. Here, we have analyzed whether ATF6 cleavage requires a PS-dependent gamma-secretase activity and whether inhibition of gamma-secretase activity would affect the UPR. Endoproteolysis of ATF6 was observed in the presence of the highly potent gamma-secretase inhibitor L-685,458. ATF6 processing also occurred in the presence of functionally inactive dominant negative mutants of PS1 (PS1 D385N) and PS2 (PS2 D366A) that do not support endoproteolysis of beta APP and Notch. Our results therefore demonstrate that ATF6 is not a substrate for PS mediated gamma-secretase-like endoproteolysis. This finding indicates that gamma-secretase inhibitors, which are currently developed as therapeutic agents to lower the A beta burden in brains of AD patients, do not interfere with the UPR response.
Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/metabolismo , Carbamatos/farmacologia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Dipeptídeos/farmacologia , Humanos , Rim/citologia , Proteínas de Membrana/genética , Mutagênese/fisiologia , Placa Amiloide/metabolismo , Presenilina-1 , Presenilina-2 , Inibidores de Proteases/farmacologia , Receptores Notch , Fatores de Transcrição/genética , TransfecçãoRESUMO
ATF6 is a member of the basic-leucine zipper family of transcription factors. It contains a transmembrane domain and is located in membranes of the endoplasmic reticulum. ATF6 has been implicated in the endoplasmic reticulum (ER) stress response pathway since it can activate expression of GRP78 and other genes induced by the ER stress response. ER stress appears to activate ATF6 by cleavage from the ER membrane and translocation to the nucleus. However, direct DNA binding by ATF6 had not been demonstrated. In this report, we have identified a consensus DNA binding sequence for ATF6. This site is related to but distinct from ATF1/CREB binding sites. The site was placed in a reporter gene and was specifically activated by ATF6 overexpression and was strongly induced by the ER stress response. A dominant negative form of ATF6 blocked ER stress induction of both ATF6 site and GRP78 reporter genes. We further found that GAL4-ATF6 could be activated by ER stress. These results demonstrate that ATF6 is a direct target of the ER stress response. A proximal sensor of the ER stress response, human IRE1 (hIRE1), was sufficient to activate the ATF6 reporter gene, while a dominant negative form of hIRE1 blocked ER stress activation, suggesting that hIRE1 is upstream of ATF6 in the ER stress signaling pathway.
Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/genética , DNA/química , Proteínas de Ligação a DNA/biossíntese , Chaperona BiP do Retículo Endoplasmático , Células HeLa , Humanos , Chaperonas Moleculares/genética , Estresse Oxidativo , Fatores de Transcrição/biossíntese , Tunicamicina/farmacologiaRESUMO
The c-fos enhancer can be activated by many signaling pathways through distinct elements of the enhancer. The enhancer contains at its core the serum response element (SRE) that binds serum response factor (SRF). On the 5' side of the SRE is a site for p62TCF which binds only when SRF is bound as well. p62TCF is encoded by three ets-related genes, Elk-1, SAP1 and SAP2. Each of these factors contain a transcriptional activation domain that is activated by phosphorylation by MAP kinases. On the 3' side of the SRE is the 'c-fos AP1 site' (FAP1) whose role has been less clear. We find here that the FAP1 site contributes strongly to phorbol ester (TPA) and Erk MAP kinase activation of the c-fos enhancer and that both the p62TCF and FAP1 sites are required for effective activation of the enhancer. We further find that the FAP1 site binds ATF1 and CREB from HeLa nuclear extracts and that the phosphorylation of these factors is induced by TPA. ATF1 and CREB can be phosphorylated by Rsk2 which is a protein kinase directly activated by Erk MAP kinases. These results suggest a signaling pathway in which Erk MAP kinase activates the c-fos enhancer by direct phosphorylation of p62TCF and by activation of Rsk related kinases that phosphorylate ATF1 and CREB.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genes fos , Sistema de Sinalização das MAP Quinases/genética , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Transcrição AP-1/fisiologia , Fator 1 Ativador da Transcrição , Sítios de Ligação/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Elementos Facilitadores Genéticos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Células HeLa , Complexo Antigênico da Nefrite de Heymann , Humanos , Soros Imunes/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Quinases S6 Ribossômicas/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Ca(2+) induction of a subset of cellular and viral immediate-early activation genes in lymphocytes has been previously mapped to response elements recognized by the MEF2 family of transcription factors. Here, we demonstrate that Ca(2+) activation of MEF2 response elements in T lymphocytes is mediated in synergy by two Ca(2+)/calmodulin-dependent enzymes, the phosphatase calcineurin, and the kinase type IV/Gr (CaMKIV/Gr), which promote transcription by the MEF2 family members MEF2A and MEF2D. Calcineurin up-regulates the activity of both factors by an NFAT-dependent mechanism, while CaMKIV/Gr selectively and independently activates MEF2D. These results identify MEF2 proteins as effectors of a pathway of gene induction in T lymphocytes which integrates diverse Ca(2+) activation signals and may be broadly operative in several tissues.
Assuntos
Sinalização do Cálcio , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Calcineurina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Humanos , Proteínas de Domínio MADS , Fatores de Transcrição MEF2 , Camundongos , Dados de Sequência Molecular , Fatores de Regulação Miogênica , Fatores de Transcrição NFATC , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Ligação Proteica , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides , Proteínas Recombinantes/metabolismo , Elementos de Resposta , Ativação TranscricionalRESUMO
ATF6 is a membrane-bound transcription factor that activates genes in the endoplasmic reticulum (ER) stress response. When unfolded proteins accumulate in the ER, ATF6 is cleaved to release its cytoplasmic domain, which enters the nucleus. Here, we show that ATF6 is processed by Site-1 protease (S1P) and Site-2 protease (S2P), the enzymes that process SREBPs in response to cholesterol deprivation. ATF6 processing was blocked completely in cells lacking S2P and partially in cells lacking S1P. ATF6 processing required the RxxL and asparagine/proline motifs, known requirements for S1P and S2P processing, respectively. Cells lacking S2P failed to induce GRP78, an ATF6 target, in response to ER stress. ATF6 processing did not require SCAP, which is essential for SREBP processing. We conclude that S1P and S2P are required for the ER stress response as well as for lipid synthesis.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico , Membranas Intracelulares/metabolismo , Pró-Proteína Convertases , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Chaperona BiP do Retículo Endoplasmático , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Serina Endopeptidases/genética , Proteína de Ligação a Elemento Regulador de Esterol 1 , Tapsigargina/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Tunicamicina/farmacologiaRESUMO
T cell receptor (TCR)-induced apoptosis of thymocytes is mediated by calcium-dependent expression of the steroid receptors Nur77 and Nor1. Nur77 expression is controlled by the transcription factor myocyte enhancer factor 2 (MEF2), but how MEF2 is activated by calcium signaling is still obscure. Cabin1, a calcineurin inhibitor, was found to regulate MEF2. MEF2 was normally sequestered by Cabin1 in a transcriptionally inactive state. TCR engagement led to an increase in intracellular calcium concentration and the dissociation of MEF2 from Cabin1, as a result of competitive binding of activated calmodulin to Cabin1. The interplay between Cabin1, MEF2, and calmodulin defines a distinct signaling pathway from the TCR to the Nur77 promoter during T cell apoptosis.
Assuntos
Apoptose , Sinalização do Cálcio , Proteínas de Ligação a DNA/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Calcineurina/química , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Expressão Gênica , Genes Reporter , Humanos , Células Jurkat , Fatores de Transcrição MEF2 , Fatores de Regulação Miogênica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-HíbridoRESUMO
The cdc25A gene encodes a tyrosine phosphatase which activates cyclin-dependent kinase activity in the G1 phase of the cell cycle. cdc25A RNA levels are induced from 3 to 6 h after serum induction of serum-starved NIH 3T3 cells, suggesting that the cdc25A gene is a delayed-early gene. Analysis of cdc25A promoter constructs showed that the cdc25A promoter is sufficient for serum induction. Surprisingly for a gene expressed in early to mid-G1, serum induction of the promoter requires an E2F site at position -62 in the promoter. Deletion or point mutation of the E2F site resulted in activation of expression in serum-starved cells and no further induction by serum treatment. E2F factors were found to bind to the cdc25A E2F site along with the retinoblastoma protein (Rb) family members p130 and p107. A shift in mobility of the E2F-p107 complex in extracts of cells induced for 6 h correlated with induction of cdc25A expression. These results suggest that serum induction of cdc25A expression is mediated by inactivation of p107 or p130, both of which repress transcription when bound to the promoter through E2F.
Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Proteínas Tirosina Fosfatases/genética , Proteínas , Fatores de Transcrição/metabolismo , Fosfatases cdc25 , Células 3T3 , Animais , Sequência de Bases , Bovinos , Ciclina E/genética , DNA Complementar , Fatores de Transcrição E2F , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro , Proteína do Retinoblastoma/metabolismo , Proteína 1 de Ligação ao Retinoblastoma , Proteína p107 Retinoblastoma-Like , Proteína p130 Retinoblastoma-Like , Soroalbumina Bovina , Fator de Transcrição DP1RESUMO
Myocyte enhancer factor 2 (MEF2) transcriptional regulatory proteins are key regulators of muscle-specific gene expression and also play a general role in the cellular response to growth factors, cytokines and environmental stressors. To identify signaling pathway components that might mediate these events, the potential role of MAP kinase and PKC signaling in the modulation of MEF2A phosphorylation and transcriptional activity were therefore studied. In transient transfection reporter assays, activated p38 MAP kinase potently increased MEF2A trans -activating potential, PKC[delta] and [epsiv] isotypes enhanced MEF2A transactivation to a lesser extent, while the ERK1/2 and JNK/SAPK pathways were without effect. A GAL4-based assay system showed that p38 MAP kinase and PKC[delta] target the MEF2A transactivation domain. We also observed an increase in p38 MAP kinase activity in congruence with the increase in MEF2A expression in differentiating primary muscle cells. COS cells overexpressing MEF2A alone or with one of the kinases were metabolically labeled with [32P]orthophosphate and MEF2A was immunoprecipitated using specific anti-MEF2A antibodies. MEF2A from cells co-transfected with activated p38 MAP kinase showed a decreased electrophoretic mobility due to phosphorylation. Subsequent phosphopeptide mapping and phosphoamino acid analysis indicated the appearance of several phoshopeptides due to p38 MAP kinase activation of MEF2A which were due to phosphorylation on serine and threonine residues. These studies position MEF2A as a nuclear target for the p38 MAP kinase signaling pathway.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Células COS , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Proteínas de Domínio MADS , Fatores de Transcrição MEF2 , Fatores de Regulação Miogênica , Fosforilação , Proteína Quinase C/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Ativação Transcricional , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Protein kinase C (PKC) is a multigene family of enzymes consisting of at least 11 isoforms. It has been implicated in the induction of c-fos and other immediate response genes by various mitogens. The serum response element (SRE) in the c-fos promoter is necessary and sufficient for induction of transcription of c-fos by serum, growth factors, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). It forms a complex with the ternary complex factor (TCF) and with a dimer of the serum response factor (SRF). TCF is the target of several signal transduction pathways and SRF is the target of the rhoA pathway. In this study we generated dominant-negative and constitutively active mutants of PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta to determine the roles of individual isoforms of PKC in activation of the SRE. Transient-transfection assays with NIH 3T3 cells, using an SRE-driven luciferase reporter plasmid, indicated that PKC-alpha and PKC-epsilon, but not PKC-delta or PKC-zeta, mediate SRE activation. TPA-induced activation of the SRE was partially inhibited by dominant negative c-Raf, ERK1, or ERK2, and constitutively active mutants of PKC-alpha and PKC-epsilon activated the transactivation domain of Elk-1. TPA-induced activation of the SRE was also partially inhibited by a dominant-negative MEKK1. Furthermore, TPA treatment of serum-starved NIH 3T3 cells led to phosphorylation of SEK1, and constitutively active mutants of PKC-alpha and PKC-epsilon activated the transactivation domain of c-Jun, a major substrate of JNK. Constitutively active mutants of PKC-alpha and PKC-epsilon could also induce a mutant c-fos promoter which lacks the TCF binding site, and they also induce transactivation activity of the SRF. Furthermore, rhoA-mediated SRE activation was blocked by dominant negative mutants of PKC-alpha or PKC-epsilon. Taken together, these findings indicate that PKC-alpha and PKC-epsilon can enhance the activities of at least three signaling pathways that converge on the SRE: c-Raf-MEK1-ERK-TCF, MEKK1-SEK1-JNK-TCF, and rhoA-SRF. Thus, specific isoforms of PKC may play a role in integrating networks of signal transduction pathways that control gene expression.
Assuntos
Genes fos , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinase Quinase 4 , MAP Quinase Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Células 3T3 , Animais , Sequência de Bases , Sítios de Ligação/genética , Células COS , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 1 , Camundongos , Mutação , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Serum response factor (SRF) plays a central role during myogenesis, being required for the expression of striated alpha-actin genes. As shown here, the small GTPase RhoA-dependent activation of SRF results in the expression of muscle-specific genes, thereby promoting myogenic differentiation in myoblast cell lines. Co-expression of activated V14-RhoA and SRF results in an approximately 10-fold activation of the skeletal alpha-actin promoter in replicating myoblasts, while SRFpm1, a dominant negative SRF mutant, blocks RhoA dependent skeletal alpha-actin promoter activity. Serum withdrawal further potentiates RhoA- and SRF-mediated activation of alpha-actin promoter to about 30-fold in differentiated myotubes. In addition, the proximal SRE1 in the skeletal alpha-actin promoter is sufficient to mediate RhoA signaling via SRF. Furthermore, SRFpm1 and to a lesser extent dominant negative N19-RhoA inhibit myoblast fusion, postreplicative myogenic differentiation, and expression of direct SRF targets such as skeletal alpha-actin and indirect targets such as myogenin and alpha-myosin heavy chain. Moreover, RhoA also stimulates the autoregulatable murine SRF gene promoter in myoblasts, and the expression level of SRF is reduced in myoblasts overexpressing N19-RhoA. Our study supports the concept that RhoA signaling via SRF serves as an obligatory muscle differentiation regulatory pathway.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Músculo Esquelético/citologia , Proteínas Nucleares/fisiologia , Transdução de Sinais , Actinas/genética , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Camundongos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Resposta Sérica , Ativação Transcricional , Proteína rhoA de Ligação ao GTPRESUMO
In various cell types certain stresses can stimulate p38 mitogen-activated protein kinase (p38 MAPK), leading to the transcriptional activation of genes that contribute to appropriate compensatory responses. In this report the mechanism of p38-activated transcription was studied in cardiac myocytes where this MAPK is a key regulator of the cell growth and the cardiac-specific gene induction that occurs in response to potentially stressful stimuli. In the cardiac atrial natriuretic factor (ANF) gene, a promoter-proximal serum response element (SRE), which binds serum response factor (SRF), was shown to be critical for ANF induction in primary cardiac myocytes transfected with the selective p38 MAPK activator, MKK6 (Glu). This ANF SRE does not possess sequences typically required for the binding of the Ets-related ternary complex factors (TCFs), such as Elk-1, indicating that p38-mediated induction through this element may take place independently of such TCFs. Although p38 did not phosphorylate SRF in vitro, it efficiently phosphorylated ATF6, a newly discovered SRF-binding protein that is believed to serve as a co-activator of SRF-inducible transcription at SREs. Expression of an ATF6 antisense RNA blocked p38-mediated ANF induction through the ANF SRE. Moreover, when fused to the Gal4 DNA-binding domain, an N-terminal 273-amino acid fragment of ATF6 was sufficient to support trans-activation of Gal4/luciferase expression in response to p38 but not the other stress kinase, N-terminal Jun kinase (JNK); p38-activating cardiac growth promoters also stimulated ATF6 trans-activation. These results indicate that through ATF6, p38 can augment SRE-mediated transcription independently of Ets-related TCFs, representing a novel mechanism of SRF-dependent transcription by MAP kinases.
Assuntos
Fator Natriurético Atrial/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Regulação da Expressão Gênica/genética , Proteínas Quinases Ativadas por Mitógeno , Miocárdio/enzimologia , Fator 6 Ativador da Transcrição , Animais , Células Cultivadas , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endotelina-1/farmacologia , Proteínas Nucleares/genética , Fenilefrina/farmacologia , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Antissenso/farmacologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Fator de Resposta Sérica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia , Transfecção/genética , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Many growth factors rapidly induce transcription of the c-fos proto-oncogene. We have investigated the pathways for induction of the c-fos promoter by serum and epidermal growth factor (EGF) in HeLa cells. Induction of the serum response element (SRE) of the c-fos promoter could be split into two parts, one involving the serum response factor-associated ternary complex factor (TCF) factors and the second mediated by core SRE sequences. Serum induction was mediated primarily by the core SRE, whereas EGF used both the TCF and core SRE pathways. Using activated and inhibitory signaling proteins, we found that phosphatidyl inositol 3-kinase (PI3K) and rho family members could mediate activation by serum. Activation by PI3K was mediated by core SRE sequences and was dependent upon rac and rho, suggesting a PI3K-to-rac-to-rho pathway for core SRE activation. The PI3K target Akt was also capable of activating the SRE but functioned through the TCF pathway, suggesting that Akt does not mediate the primary PI3K pathway to the SRE and that Akt is capable of activating TCF family members. Serum and EGF induction of the core SRE was partially inhibited by rho and PI3K inhibitors. The use of these inhibitors demonstrates the complexity of signaling pathways to the SRE and suggests that serum activates rho by PI3K-dependent and -independent pathways.
Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/genética , Células 3T3 , Animais , Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Proto-Oncogene Mas , Transdução de Sinais , Proteínas rac de Ligação ao GTP , Proteínas rho de Ligação ao GTPRESUMO
The c-jun proto-oncogene encodes a transcription factor which is activated by mitogens both transcriptionally and by phosphorylation by Jun N-terminal kinase (JNK). We have investigated the cellular signalling pathways involved in epidermal growth factor (EGF) induction of the c-jun promoter. We find that two sequence elements, which bind ATF1 and MEF2D transcription factors, are required in HeLa cells, although they are not sufficient for maximal induction. Activated forms of Ras, RacI, Cdc42Hs, and MEKK increased expression of the c-jun promoter, while dominant negative forms of Ras, RacI, and MEK kinase (MEKK) inhibited EGF induction. These and previously published results suggest that EGF activates the c-jun promoter by a Ras-to-Rac-to-MEKK pathway. This pathway is similar to that used for posttranslational activation of c-jun by JNK.
Assuntos
Fator de Crescimento Epidérmico/fisiologia , Regulação da Expressão Gênica , MAP Quinase Quinase Quinase 1 , Proteínas Quinases Ativadas por Mitógeno , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Fator 1 Ativador da Transcrição , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação Enzimológica da Expressão Gênica , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas de Domínio MADS , Fatores de Transcrição MEF2 , Fatores de Regulação Miogênica , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Proteína cdc42 de Ligação ao GTPRESUMO
Serum response factor (SRF) is a transcription factor which binds to the serum response element (SRE) in the c-fos promoter. It is required for regulated expression of the c-fos gene as well as other immediate-early genes and some tissue-specific genes. To better understand the regulation of SRF, we used a yeast interaction assay to screen a human HeLa cell cDNA library for SRF-interacting proteins. ATF6, a basic-leucine zipper protein, was isolated by binding to SRF and in particular to its transcriptional activation domain. The binding of ATF6 to SRF was also detected in vitro. An ATF6-VP16 chimera activated expression of an SRE reporter gene in HeLa cells, suggesting that ATF6 can interact with endogenous SRF. More strikingly, an antisense ATF6 construct reduced serum induction of a c-fos reporter gene, suggesting that ATF6 is involved in activation of transcription by SRF. ATF6 was previously partially cloned as a member of the ATF family. The complete cDNA of ATF6 was isolated, and its expression pattern was described.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Clonagem Molecular , Pegada de DNA , Proteínas de Ligação a DNA/genética , Genes Reporter , Genes fos , Células HeLa , Humanos , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Análise de Sequência de DNA , Fator de Resposta Sérica , Fatores de Transcrição/genética , Ativação TranscricionalRESUMO
The c-Jun amino-terminal kinases (JNKs) are a subfamily of mitogen-activated protein kinases that phosphorylate c-Jun and ATF2, and it has been postulated that phosphorylated c-Jun enhances its own expression through AP-1 sites on the c-jun promoter. In this study, we asked whether signals activating JNK regulate the c-jun promoter. Using NIH 3T3 cells expressing G protein-coupled m1 acetylcholine receptors as an experimental model, we have recently shown that the cholinergic agonist carbachol, but not platelet-derived growth factor, potently elevates JNK activity. Consistent with these findings, carbachol, but not platelet-derived growth factor, increased the activity of a c-jun promoter-driven reporter gene (for chloramphenicol acetyltransferase). However, coexpression of JNK kinase kinase (MEKK) effectively increased JNK activity, but resulted in surprisingly limited induction of the c-jun promoter. This raised the possibility that pathway(s) distinct from JNK control the c-jun promoter, and prompted us to explore which of its regulatory elements participate in transcriptional control. We observed that deletion of the 3' AP-1 site diminished chloramphenicol acetyltransferase activity in response to carbachol, but only to a limited extent. In contrast, deletion of a MEF2 site dramatically reduced expression, and deletion of both the MEF2 and 3' AP-1 sites abolished induction. Furthermore, cotransfection with MEF2C and MEF2D cDNAs potently enhanced the activity of the c-jun promoter in response to carbachol, and stimulation of m1 receptors, but not direct JNK activation, induced expression of a MEF2-responsive plasmid. Taken together, these data strongly suggest that MEF2 mediates c-jun promoter expression by G protein-coupled receptors through a yet to be identified pathway, distinct from that of JNK.
Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Genes jun , Proteínas Quinases Ativadas por Mitógeno , Regiões Promotoras Genéticas , Receptores Colinérgicos/fisiologia , Fatores de Transcrição/fisiologia , Células 3T3 , Animais , Carbacol/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Fatores de Transcrição MEF2 , Camundongos , Fatores de Regulação MiogênicaRESUMO
Serum response factor (SRF) gene expression in avian embryonic muscle lineages plays a central role in activating alpha-actin gene activity. In early stage HH 6 avian embryos, SRF mRNA expression showed strong localization to the neural groove, primitive streak, lateral plate mesoderm, and Hensen's node, while distinct SRF expression was seen later in the neural folds and the somites by HH stage 8. SRF transcripts appeared in the precardiac splanchnic mesoderm in stage HH 9 embryos and was detected at higher levels in the myocardium, somites, and lateral mesoderm of HH 11 embryos. SRF antibody staining demonstrated significant SRF protein accumulation in the myocardium of the developing heart and the myotomal portion of somites. During primary myogenesis in culture, SRF transcripts and nuclear SRF protein content increased about 40-fold, as primary myoblasts withdrew from the cell cycle, reaching their highest levels prior to the upregulation of the skeletal alpha-actin gene. A dominant-negative SRF mutant, SRFpm1, which inhibited DNA binding, but not dimerization of monomeric SRF subunits, blocked transcriptional activation of a skeletal alpha-actin promoter-luciferase reporter gene during myogenesis. Transcriptional blockade was reversed by co-transfections of a wild-type SRF expression vector, but was not rescued by the expression of other myogenic factors, such as MyoD and Mef-2C. Thus, SRF displayed an embryonic expression pattern restricted primarily to striated muscle cell lineages, in which increased mass of nuclear SRF was obligatory for alpha-actin gene transcription.
Assuntos
Actinas/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculos/embriologia , Fatores de Regulação Miogênica , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Linhagem da Célula/genética , Embrião de Galinha , DNA Complementar/isolamento & purificação , Proteínas de Ligação a DNA/análise , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição MEF2 , Dados de Sequência Molecular , Músculos/química , Proteína MyoD/genética , Proteínas Nucleares/análise , Regiões Promotoras Genéticas/genética , RNA Mensageiro/química , Fator de Resposta Sérica , Fatores de Transcrição/análiseAssuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Fator de Resposta Sérica , Transcrição Gênica , Ativação TranscricionalRESUMO
Serum induction of c-jun expression in HeLa cells requires a MEF2 site at -59 in the c-jun promoter. MEF2 sites, found in many muscle-specific enhancers, are bound by a family of transcription factors, MEF2A through -D, which are related to serum response factor in their DNA binding domains. We have found that MEF2D is the predominant protein in HeLa cells that binds to the c-jun MEF2 site. Serum induction of a MEF2 reporter gene was not observed in a line of NIH 3T3 cells which contain low MEF2 site binding activity. Transfection of MEF2D into NIH 3T3 cells reconstituted serum induction, demonstrating that MEF2D is required for the serum response. Deletion analysis of MEF2D showed that its DNA binding domain, when fused to a heterologous transcriptional activation domain, was sufficient for serum induction of a MEF2 reporter gene. This is the domain homologous to that in the serum response factor which is required for serum induction of the c-fos serum response element, suggesting that serum regulation of c-fos and c-jun may share a common mechanism.