Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Commun ; 15(1): 1832, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418452

RESUMO

PHF6 mutations (PHF6MT) are identified in various myeloid neoplasms (MN). However, little is known about the precise function and consequences of PHF6 in MN. Here we show three main findings in our comprehensive genomic and proteomic study. Firstly, we show a different pattern of genes correlating with PHF6MT in male and female cases. When analyzing male and female cases separately, in only male cases, RUNX1 and U2AF1 are co-mutated with PHF6. In contrast, female cases reveal co-occurrence of ASXL1 mutations and X-chromosome deletions with PHF6MT. Next, proteomics analysis reveals a direct interaction between PHF6 and RUNX1. Both proteins co-localize in active enhancer regions that define the context of lineage differentiation. Finally, we demonstrate a negative prognostic role of PHF6MT, especially in association with RUNX1. The negative effects on survival are additive as PHF6MT cases with RUNX1 mutations have worse outcomes when compared to cases carrying single mutation or wild-type.


Assuntos
Leucemia Mieloide Aguda , Neoplasias , Humanos , Masculino , Feminino , Proteínas Repressoras/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteômica , Mutação , Leucemia Mieloide Aguda/genética
2.
PLoS Genet ; 18(11): e1010367, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36327219

RESUMO

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Assuntos
COVID-19 , Exoma , Humanos , Exoma/genética , Estudo de Associação Genômica Ampla , COVID-19/genética , Predisposição Genética para Doença , Receptor 7 Toll-Like/genética , SARS-CoV-2/genética
3.
Virology ; 572: 64-71, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598394

RESUMO

Recurrent waves of COVID19 remain a major global health concern. Repurposing either FDA-approved or clinically advanced drug candidates can save time and effort required for validating the safety profile and FDA approval. However, the selection of appropriate screening approaches is key to identifying novel candidate drugs with a higher probability of clinical success. Here, we report a rapid, stratified two-step screening approach using pseudovirus entry inhibition assay followed by an infectious prototypic SARS CoV2 cytotoxic effect inhibition assay in multiple cell lines. Using this approach, we screened a library of FDA-approved and clinical-stage drugs and identified four compounds, apilimod, berbamine, cepharanthine and (S)-crizotinib which potently inhibited SARS CoV2-induced cell death. Importantly, these drugs exerted similar inhibitory effect on the delta and omicron variants although they replicated less efficiently than the prototypic strain. Apilimod is currently under clinical trial (NCT04446377) for COVID19 supporting the validity and robustness of our screening approach.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2
4.
Cytokine ; 152: 155810, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121493

RESUMO

Genome-wide association studies have recently identified 3p21.31, with lead variant pointing to the CXCR6 gene, as the strongest thus far reported susceptibility risk locus for severe manifestation of COVID-19. In order the determine its role, we measured plasma levels of Chemokine (C-X-C motif) ligand 16 (CXCL16) in the plasma of COVID-19 hospitalized patients. CXCL16 interacts with CXCR6 promoting chemotaxis or cell adhesion. The CXCR6/CXCL16 axis mediates homing of T cells to the lungs in disease and hyper-expression is associated with localised cellular injury. To characterize the CXCR6/CXCL16 axis in the pathogenesis of severe COVID-19, plasma concentrations of CXCL16 collected at baseline from 115 hospitalized COVID-19 patients participating in ODYSSEY COVID-19 clinical trial were assessed together with a set of controls. We report elevated levels of CXCL16 in a cohort of COVID-19 hospitalized patients. Specifically, we report significant elevation of CXCL16 plasma levels in association with severity of COVID-19 (as defined by WHO scale) (P-value < 0.02). Our current study is the largest thus far study reporting CXCL16 levels in COVID-19 hospitalized patients (with whole-genome sequencing data available). The results further support the significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19 and warrants further studies to understand which patients would benefit most from targeted treatments.


Assuntos
COVID-19/sangue , Quimiocina CXCL16/sangue , SARS-CoV-2/metabolismo , Idoso , COVID-19/genética , COVID-19/imunologia , Quimiocina CXCL16/genética , Quimiocina CXCL16/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Receptores CXCR6/sangue , Receptores CXCR6/genética , Receptores CXCR6/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
Cell Rep ; 36(12): 109747, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551289

RESUMO

PBRM1, a subunit of the PBAF coactivator complex that transcription factors use to activate target genes, is genetically inactivated in almost all clear cell renal cell cancers (RCCs). Using unbiased proteomic analyses, we find that PAX8, a master transcription factor driver of proximal tubule epithelial fates, recruits PBRM1/PBAF. Reverse analyses of the PAX8 interactome confirm recruitment specifically of PBRM1/PBAF and not functionally similar BAF. More conspicuous in the PAX8 hub in RCC cells, however, are corepressors, which functionally oppose coactivators. Accordingly, key PAX8 target genes are repressed in RCC versus normal kidneys, with the loss of histone lysine-27 acetylation, but intact lysine-4 trimethylation, activation marks. Re-introduction of PBRM1, or depletion of opposing corepressors using siRNA or drugs, redress coregulator imbalance and release RCC cells to terminal epithelial fates. These mechanisms thus explain RCC resemblance to the proximal tubule lineage but with suppression of the late-epithelial program that normally terminates lineage-precursor proliferation.


Assuntos
Carcinoma de Células Renais/patologia , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Túbulos Renais Proximais/metabolismo , Fator de Transcrição PAX8/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Túbulos Renais Proximais/citologia , Masculino , Camundongos , Camundongos Nus , Mutagênese , Fator de Transcrição PAX8/genética , Mapas de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ativação Transcricional , Transplante Heterólogo
7.
Cytokine ; 148: 155662, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34353696

RESUMO

BACKGROUND: Elevated Interleukin-6 (IL-6) may play an important role in the pathophysiology of COVID-19 yet attenuated response is not seen across all severe patients. We aimed to determine the effect of IL-6 baseline levels and other clinical variables on mortality and outcomes in hospitalized COVID-19 patients as well as to explore genetic variants associated with attenuated IL-6 response. METHODS: Baseline IL-6 cytokine levels were measured in hospitalized patients participating in ongoing ODYSSEY phase 3 randomized study of tradipitant and placebo in hospitalized patients with severe COVID-19 who are receiving supplemental oxygen support. Furthermore blood samples for whole genome sequencing analysis were collected from 150 participants. RESULTS: We report significantly elevated IL-6 in COVID-19 infected hospitalized patients, n = 100 (p-value < 0.0001) when compared to controls n = 324. We also report a significantly increased level of IL-6 (p-value < 0.01) between the severe and mild COVID-19 patients with severity defined on a WHO scale. Excessive IL-6 plasma levels correlate with higher mortality (p-value 0.001). Additionally, based on our classification analysis, combination of IL-6 elevation and high levels of serum glucose can identify highest risk-group of COVID19 patients. Furthermore, we explore the role of genetic regulatory variants affecting baseline IL-6 levels specifically in COVID-19 patients. We have directly tested the association between variants in the IL6 and IL6R gene region and IL6 plasma levels. We provide results for a common IL-6 variant previously associated with pneumonia, rs1800795, and rs2228145 that was previously shown to affect IL-6 plasma levels, as well as report on novel variants associated with IL-6 plasma levels detected in our study patients. CONCLUSIONS: While it is unlikely that "cytokine storm" is the norm in severe COVID19, baseline elevations above 150 pg/ml may be associated with worst outcomes and as such may warrant treatment considerations. So far no clinical studies used IL-6 baseline assessment to stratify the patient population participating in clinical studies. We believe that careful examination and interpretation of the IL-6 levels and genetic variants can help to determine a patient population with a potentially very robust clinical response to IL-6 inhibition. TRIAL REGISTRATION: Clinicaltrials.gov: NCT04326426.


Assuntos
COVID-19/sangue , COVID-19/genética , Interleucina-6/sangue , Polimorfismo de Nucleotídeo Único/genética , Receptores de Interleucina-6/genética , Alelos , COVID-19/mortalidade , Heterozigoto , Humanos , Interleucina-6/genética
9.
Br J Haematol ; 189(5): 967-975, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004386

RESUMO

The therapy algorithm for severe aplastic anaemia (sAA) is established but moderate AA (mAA), which likely reflects a more diverse pathogenic mechanism, often represents a treatment/management conundrum. A cohort of AA patients (n = 325) was queried for those with non-severe disease using stringent criteria including bone marrow hypocellularity and chronic persistence of moderately depressed blood counts. As a result, we have identified and analyzed pathological and clinical features in 85 mAA patients. Progression to sAA and direct clonal evolution (paroxysmal nocturnal haemoglobinuria/acute myeloid leukaemia; PNH/AML) occurred in 16%, 11% and 1% of mAA cases respectively. Of the mAA patients who received immunosuppressive therapy, 67% responded irrespective of time of initiation of therapy while conservatively managed patients showed no spontaneous remissions. Genomic analysis of mAA identified evidence of clonal haematopoiesis with both persisting and remitting patterns at low allelic frequencies; with more pronounced mutational burden in sAA. Most of the mAA patients have autoimmune pathogenesis similar to those with sAA, but mAA contains a mix of patients with diverse aetiologies. Although progression rates differed between mAA and sAA (P = 0·003), cumulative incidences of mortalities were only marginally different (P = 0·095). Our results provide guidance for diagnosis/management of mAA, a condition for which no current standard of care is established.


Assuntos
Anemia Aplástica/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Anemia Aplástica/sangue , Anemia Aplástica/genética , Anemia Aplástica/terapia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Benzoatos/uso terapêutico , Transfusão de Sangue , Medula Óssea/patologia , Criança , Pré-Escolar , Evolução Clonal , Terapia Combinada , Danazol/uso terapêutico , Gerenciamento Clínico , Progressão da Doença , Feminino , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Hemoglobinúria Paroxística/etiologia , Hemoglobinúria Paroxística/patologia , Humanos , Hidrazinas/uso terapêutico , Imunossupressores/uso terapêutico , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Pirazóis/uso terapêutico , Índice de Gravidade de Doença , Adulto Jovem
12.
Blood Adv ; 3(24): 4228-4237, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31869410

RESUMO

Patients with therapy-related acute lymphoblastic leukemia (t-ALL) represent a small subset of acute lymphoblastic leukemia (ALL) patients who received genotoxic therapy (ie, chemotherapy or radiation) for a prior malignancy. These patients should be distinguished from patients with de novo ALL (dn-ALL) and ALL patients who have a history of prior malignancy but have not received cytotoxic therapies in the past (acute lymphoblastic leukemia with prior malignancy [pm-ALL]). We report a retrospective multi-institutional study of patients with t-ALL (n = 116), dn-ALL (n = 100), and pm-ALL (n = 20) to investigate the impact of prior cytotoxic therapies on clinical outcomes. Compared with patients with pm-ALL, t-ALL patients had a significantly shorter interval between the first malignancy and ALL diagnosis and a higher frequency of poor-risk cytogenetic features, including KMT2A rearrangements and myelodysplastic syndrome-like abnormalities (eg, monosomal karyotype). We observed a variety of mutations among t-ALL patients, with the majority of patients exhibiting mutations that were more common with myeloid malignancies (eg, DNMT3A, RUNX1, ASXL1), whereas others had ALL-type mutations (eg, CDKN2A, IKZF1). Median overall survival was significantly shorter in the t-ALL cohort compared with patients with dn-ALL or pm-ALL. Patients who were eligible for hematopoietic cell transplantation had improved long-term survival. Collectively, our results support t-ALL as a distinct entity based on its biologic and clinical features.


Assuntos
Variação Genética , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/etiologia , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Aberrações Cromossômicas , Terapia Combinada , Diagnóstico Diferencial , Feminino , Humanos , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Estudos Retrospectivos , Adulto Jovem
13.
Blood Adv ; 3(22): 3579-3589, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31738830

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies. Known predisposing factors to adult MDS include rare germline mutations, cytotoxic therapy, age-related clonal hematopoiesis, and autoimmune or chronic inflammatory disorders. To date, no published studies characterizing MDS-associated germline susceptibility polymorphisms exist. We performed a genome-wide association study of 2 sample sets (555 MDS cases vs 2964 control subjects; 352 MDS cases vs 2640 control subjects) in non-del(5q) MDS cases of European genomic ancestry. Meta-analysis identified 8 MDS-associated loci at 1q31.1 (PLA2G4A), 3p14.1 (FAM19A4), 5q21.3 (EFNA5), 6p21.33, 10q23.1 (GRID1), 12q24.32, 15q26.1, and 20q13.12 (EYA2) that approached genome-wide significance. Gene expression for 5 loci that mapped within or near genes was significantly upregulated in MDS bone marrow cells compared with those of control subjects (P < .01). Higher PLA2G4A expression and lower EYA2 expression were associated with poorer overall survival (P = .039 and P = .037, respectively). Higher PLA2G4A expression is associated with mutations in NRAS (P < .001), RUNX1 (P = .012), ASXL1 (P = .007), and EZH2 (P = .038), all of which are known to contribute to MDS development. EYA2 expression was an independently favorable risk factor irrespective of age, sex, and Revised International Scoring System score (relative risk, 0.67; P = .048). Notably, these genes have regulatory roles in innate immunity, a critical driver of MDS pathogenesis. EYA2 overexpression induced innate immune activation, whereas EYA2 inhibition restored colony-forming potential in primary MDS cells indicative of hematopoietic restoration and possible clinical relevance. In conclusion, among 8 suggestive MDS-associated loci, 5 map to genes upregulated in MDS with functional roles in innate immunity and potential biological relevance to MDS.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndromes Mielodisplásicas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Deleção Cromossômica , Cromossomos Humanos Par 5 , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Síndromes Mielodisplásicas/diagnóstico
14.
Nat Commun ; 10(1): 5386, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772163

RESUMO

Myelodysplastic syndromes (MDS) arise in older adults through stepwise acquisitions of multiple somatic mutations. Here, analyzing 1809 MDS patients, we infer clonal architecture by using a stringent, the single-cell sequencing validated PyClone bioanalytic pipeline, and assess the position of the mutations within the clonal architecture. All 3,971 mutations are grouped based on their rank in the deduced clonal hierarchy (dominant and secondary). We evaluated how they affect the resultant morphology, progression, survival and response to therapies. Mutations of SF3B1, U2AF1, and TP53 are more likely to be dominant, those of ASXL1, CBL, and KRAS are secondary. Among distinct combinations of dominant/secondary mutations we identified 37 significant relationships, of which 12 affect clinical phenotypes, 5 cooperatively associate with poor prognosis. They also predict response to hypomethylating therapies. The clonal hierarchy has distinct ranking and the resultant invariant combinations of dominant/secondary mutations yield novel insights into the specific clinical phenotype of MDS.


Assuntos
Mutação , Síndromes Mielodisplásicas/etiologia , Idoso , Feminino , Hematopoese/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Fenótipo , Fosfoproteínas/genética , Mielofibrose Primária/genética , Fatores de Processamento de RNA/genética , Fator de Processamento U2AF/genética , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
15.
Blood Adv ; 3(14): 2164-2178, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31320321

RESUMO

Somatic mutations of the CUT-like homeobox 1 (CUX1) gene (CUX1 MT) can be found in myeloid neoplasms (MNs), in particular, in myelodysplastic syndromes (MDSs). The CUX1 locus is also deleted in 3 of 4 MN cases with -7/del(7q). A cohort of 1480 MN patients was used to characterize clinical features and clonal hierarchy associated with CUX1 MT and CUX1 deletions (CUX1 DEL) and to analyze their functional consequences in vitro. CUX1 MT were present in 4% of chronic MNs. CUX1 DEL were preferentially found in advanced cases (6%). Most MDS and acute myeloid leukemia (AML) patients with -7/del(7q) and up to 15% of MDS patients and 5% of AML patients diploid for the CUX1 locus exhibited downmodulated CUX1 expression. In 75% of mutant cases, CUX1 MT were heterozygous, whereas microdeletions and homozygous and compound-heterozygous mutations were less common. CUX MT/DEL were associated with worse survival compared with CUX1 WT Within the clonal hierarchy, 1 of 3 CUX1 MT served as founder events often followed by secondary BCOR and ASXL1 subclonal hits, whereas TET2 was the most common ancestral lesion, followed by subclonal CUX1 MT Comet assay of patients' bone marrow progenitor cells and leukemic cell lines performed in various experimental conditions revealed that frameshift mutations, hemizygous deletions, or experimental CUX1 knockdown decrease the repair of oxidized bases. These functional findings may explain why samples with either CUX1 MT or low CUX1 expression coincided with significantly higher numbers of somatic hits by whole-exome sequencing. Our findings implicate the DNA repair dysfunction resulting from CUX1 lesions in the pathogenesis of MNs, in which they lead to a mutator phenotype.


Assuntos
Suscetibilidade a Doenças , Proteínas de Homeodomínio/genética , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/etiologia , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Biomarcadores , Aberrações Cromossômicas , Evolução Clonal/genética , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Leucócitos Mononucleares , Perda de Heterozigosidade , Masculino , Mutação , Transtornos Mieloproliferativos/mortalidade , Transtornos Mieloproliferativos/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Prognóstico , Proteínas Repressoras/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo
16.
Leuk Lymphoma ; 60(13): 3132-3137, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31288594

RESUMO

The MLL3 gene has been shown to be recurrently mutated in many malignancies including in families with acute myeloid leukemia. We demonstrate that many MLL3 variant calls made by exome sequencing are false positives due to misalignment to homologous regions, including a region on chr21, and can only be validated by long-range PCR. Numerous other recurrently mutated genes reported in COSMIC and TCGA databases have pseudogenes and cannot also be validated by conventional short read-based sequencing approaches. Genome-wide identification of pseudogene regions demonstrates that frequency of these homologous regions is increased with sequencing read lengths below 200 bps. To enable identification of poor quality sequencing variants in prospective studies, we generated novel genome-wide maps of regions with poor mappability that can be used in variant calling algorithms. Taken together, our findings reveal that pseudogene regions are a source of false-positive mutations in cancers.


Assuntos
Análise Mutacional de DNA/estatística & dados numéricos , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas/estatística & dados numéricos , Leucemia Mieloide Aguda/genética , Homologia de Sequência do Ácido Nucleico , Algoritmos , Mapeamento Cromossômico/métodos , Éxons/genética , Reações Falso-Positivas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/diagnóstico , Pseudogenes/genética , Sequenciamento do Exoma/estatística & dados numéricos
18.
Elife ; 82019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31070582

RESUMO

Genome-wide association studies (GWAS) have identified thousands of variants associated with human diseases and traits. However, the majority of GWAS-implicated variants are in non-coding regions of the genome and require in depth follow-up to identify target genes and decipher biological mechanisms. Here, rather than focusing on causal variants, we have undertaken a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389 candidate genes contained in 75 loci associated with red blood cell traits. Using this approach, we identify 77 genes at 38 GWAS loci, with most loci harboring 1-2 candidate genes. Importantly, the hit set was strongly enriched for genes validated through orthogonal genetic approaches. Genes identified by this approach are enriched in specific and relevant biological pathways, allowing regulators of human erythropoiesis and modifiers of blood diseases to be defined. More generally, this functional screen provides a paradigm for gene-centric follow up of GWAS for a variety of human diseases and traits.


Assuntos
Doenças Genéticas Inatas , Predisposição Genética para Doença , Hematopoese/genética , Locos de Características Quantitativas/genética , Eritrócitos/metabolismo , Eritrócitos/patologia , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética
19.
Cell Rep ; 27(4): 1062-1072.e5, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018124

RESUMO

Gap-junction-mediated cell-cell communication enables tumor cells to synchronize complex processes. We previously found that glioblastoma cancer stem cells (CSCs) express higher levels of the gap junction protein Cx46 compared to non-stem tumor cells (non-CSCs) and that this was necessary and sufficient for CSC maintenance. To understand the mechanism underlying this requirement, we use point mutants to disrupt specific functions of Cx46 and find that Cx46-mediated gap-junction coupling is critical for CSCs. To develop a Cx46 targeting strategy, we screen a clinically relevant small molecule library and identify clofazimine as an inhibitor of Cx46-specific cell-cell communication. Clofazimine attenuates proliferation, self-renewal, and tumor growth and synergizes with temozolomide to induce apoptosis. Although clofazimine does not cross the blood-brain barrier, the combination of clofazimine derivatives optimized for brain penetrance with standard-of-care therapies may target glioblastoma CSCs. Furthermore, these results demonstrate the importance of targeting cell-cell communication as an anti-cancer therapy.


Assuntos
Conexina 43/fisiologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Clofazimina/farmacologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Análise Mutacional de DNA , Junções Comunicantes/fisiologia , Glioblastoma/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood Adv ; 3(6): 917-921, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30898763

RESUMO

T large granular lymphocyte leukemia (T-LGLL) is a clonal lymphoproliferative disorder that can arise in the context of pathologic or physiologic cytotoxic T-cell (CTL) responses. STAT3 mutations are often absent in typical T-LGLL, suggesting that in a significant fraction of patients, antigen-driven expansion alone can maintain LGL clone persistence. We set out to determine the relationship between activating STAT3 hits and CTL clonal selection at presentation and in response to therapy. Thus, a group of patients with T-LGLL were serially subjected to deep next-generation sequencing (NGS) of the T-cell receptor (TCR) Vß complementarity-determining region 3 (CDR3) and STAT3 to recapitulate clonal hierarchy and dynamics. The results of this complex analysis demonstrate that STAT3 mutations produce either a sweeping or linear subclone within a monoclonal CTL population either early or during the course of disease. Therapy can extinguish a LGL clone, silence it, or adapt mechanisms to escape elimination. LGL clones can persist on elimination of STAT3 subclones, and alternate STAT3-negative CTL clones can replace therapy-sensitive CTL clones. LGL clones can evolve and are fueled by a nonextinguished antigenic drive. STAT3 mutations can accelerate this process or render CTL clones semiautonomous and not reliant on physiologic stimulation.


Assuntos
Leucemia Linfocítica Granular Grande/patologia , Mutação , Fator de Transcrição STAT3/genética , Estudos de Casos e Controles , Células Clonais , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T Citotóxicos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA