Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Inorg Biochem ; 248: 112355, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579689

RESUMO

The studies on metal complexes as potential antifungals are of growing interest because they may be the answer to increasingly effective defense mechanisms. Herein we present two new copper(I) iodide or thiocyanide complexes with 2,9-dimethyl-1,10-phenanthroline (dmp) and diphenylphosphine derivative of 1-(4-methoxyphenyl)piperazine (4MP): [CuI(dmp)4MP] (1-4MP) and [CuNCS(dmp)4MP] (2-4MP) - their synthesis, as well as structural and spectroscopic characteristics. Interestingly, while 4MP and its oxide derivative (4MOP) show a very low or no activity against all tested Candida albicans strains (MIC50 ≥ 200 µM against CAF2-1 - laboratory control strain, DSY1050 - mutant without transporters Cdr1, Cdr2, Mdr1; isogenic for CAF2-1, and fluconazole resistant clinical isolates), for 1-4MP and 2-4MP MIC50 values were 0.4 µM, independently on the complex and strain tested. Determination of the viability of NHDF-Ad (Normal Adult Human Dermal Fibroblasts) cell line treated with 1-4MP and 2-4MP showed that for both complexes there was only a 20% reduction in the concentration range » to 2 × MIC50 and the 70% at 4 × MIC50. Subsequently, the MLCT based luminescence of the complexes in aqueous media allowed to record the confocal micrographs of 1-4MP in the cells. The results show that it is situated most likely in the vacuoles (C. albicans) or lysosomes (NHDF-Ad).


Assuntos
Cobre , Farmacóforo , Humanos , Cobre/química , Testes de Sensibilidade Microbiana , Antifúngicos/química , Candida albicans/metabolismo
2.
Dalton Trans ; 49(25): 8528-8539, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525156

RESUMO

The search for new antifungals is very important because the large genetic variation of pathogenic organisms has resulted in the development of increasingly effective defense mechanisms by microorganisms. Metal complexes as potential drugs are nowadays gaining interest, because they are characterized by accessible redox states of metal centers and a plethora of easily modifiable geometries. In this work we present two new copper(i) iodide or thiocyanide complexes with 2,9-dimethyl-1,10-phenanthroline (dmp) and a diphenylphosphane derivative of ketoconazole (KeP), where a ketoconazole acetyl group is replaced by the -CH2PPh2 unit, [CuI(dmp)KeP] (1-KeP) and [CuNCS(dmp)KeP] (2-KeP) - their synthesis and structural characteristics. The analysis of the intrinsic fluorescence of the ketoconazole moiety in the coordinated KeP molecule revealed that the copper(i) central atom does not act as a quencher and the observed decrease of fluorescence intensity is a result of a strong inner filter effect caused by the presence of the CuXdmp unit. Moreover, the complexes exhibit a remarkable MLCT (metal-ligand charge transfer) based phosphorescence with the emission maximum at 600-615 nm in aqueous media, which probably results from the formation of dimers and higher order oligomers in the most polar solutions. Both complexes proved to be promising antifungal agents towards Candida albicans, showing a relatively high efficiency towards the fluconazole resistant strains with -CDR1 and CDR2 or MDR1 efflux pump overexpression, which suggests that they overcome at least partially these defense mechanisms. Simulations of docking to the cytochrome P450 14α-demethylase (the azoles' primary molecular target) suggested that the compounds studied were rather incapable of competitively inhibiting this enzyme, unlike ketoconazole and the KeP ligand. On the other hand, the phosphorescence in aqueous solutions allowed recording the confocal micrographs of the complexes which showed that both of them are situated in spherical structures inside the cells, most likely in the vacuoles.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Imagem Óptica , Adulto , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cobre/farmacologia , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Humanos , Cetoconazol/química , Cetoconazol/farmacologia , Medições Luminescentes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenantrolinas/química , Fenantrolinas/farmacologia , Fosfinas/química , Fosfinas/farmacologia
3.
J Inorg Biochem ; 165: 25-35, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27764707

RESUMO

In this paper we present lomefloxacin's (HLm, 2nd generation fluoroquinolone antibiotic agent) organic and inorganic derivatives: aminomethyl(diphenyl)phosphine (PLm), its oxide as well as new copper(I) iodide or copper(I) thiocyanate complexes with PLm and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) as the auxiliary ligands. The synthesized compounds were fully characterised by NMR, UV-Vis and luminescence spectroscopies. Selected structures were analysed by theoretical DFT (density functional theory) methods. High stability of the complexes in aqueous solutions in the presence of atmosferic oxygen was proven. Cytotoxic activity of all compounds was tested towards three cancer cell lines (CT26 - mouse colon carcinoma, A549 - human lung adenocarcinoma, and MCF7 - human breast adenocarcinoma). All complexes are characterised by cytotoxic activity higher than the activity of the parent drug and its organic derivatives as well as cisplatin. Studied derivatives as well as parent drug do not intercalate to DNA, except Cu(I) complexes with bq ligand. All studied complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The addition of H2O2 caused distinct changes in the plasmid structure and led to single- and/or double-strain plasmid cleavage. Studied compounds interact with human serum albumin without affecting its secondary structure.


Assuntos
Cobre , Citotoxinas , DNA/química , Fluoroquinolonas , Albumina Sérica/química , Animais , Cobre/química , Cobre/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , DNA/metabolismo , Feminino , Fluoroquinolonas/síntese química , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Humanos , Células MCF-7 , Camundongos , Espectrofotometria
4.
Dalton Trans ; 40(11): 2459-68, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21286606

RESUMO

The luminescent complexes of triphenylphosphine and two interesting aminomethylphosphines: P(CH(2)N(CH(2)CH(2))(2)NCH(3))(3) and P(CH(2)N(CH(2)CH(2))(2)O)(3) with copper(I) iodide and 2,9-dimethyl-1,10-phenanthroline (dmp): [CuI(dmp)PPh(3)], [CuI(dmp)P(CH(2)N(CH(2)CH(2))(2)NCH(3))(3)] and [CuI(phen)P(CH(2)N(CH(2)CH(2))(2)O)(3)] are presented in this work. These complexes were characterized in solution by means of NMR spectroscopy and their structures were crystallographically determined in the solid state. All complexes crystallize as the discrete dimers bound by π-stacking interactions between dmp rings. The coordination geometry about the Cu(I) centre is pseudo-tetrahedral showing small flattening and large rocking distortions. The investigated compounds exhibit intense orange photoluminescence in the solid state (emission peaks at r.t.: λ(max) = 588-592 nm; τ = 1.7-2.2 and 6.4-10.0 µs; at 77 K: λ(max) = 605-612 nm; τ = 4.8-6.5 and 32-47 µs), which is several orders higher than the luminescence of the analogous complexes with 1,10-phenanthroline (phen). Electronic and structural properties of the [CuI(dmp/phen)PR(3)] complexes were characterized using DFT methods to interpret their photophysics. On the basis of TDDFT calculations the broad CT bands observed in UV-Vis spectra are interpreted as the two mixed transitions from σ(CuI) bond with a small admixture of σ(CuP) bond to π* phen or dmp ligand: (MX,MPR(3))LCT, while the emissions most probably occur from two triplet states which are in thermal equilibrium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA