Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 529(3): 672-677, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736691

RESUMO

The anticancer antibiotic heptelidic acid is a sesquiterpene lactone produced by the beneficial plant fungus Trichoderma virens. This species has been separated into two strains, referred to as P and Q, based on its biosynthesis of secondary metabolites; notably, only P-strains were reported to produce heptelidic acid. While characterizing a Q-strain of T. virens containing a directed mutation in the non-ribosomal peptide synthetase encoding gene Tex7, the appearance of an unknown compound in anomalously large quantities was visualized by TLC. Using a combination of HPLC, LC-MS/MS, and NMR spectroscopy, this compound was identified as heptelidic acid. This discovery alters the strain classification structure of T. virens. Additionally, the Tex7 mutants inhibited growth of maize seedlings, while retaining the ability to induce systemic resistance against the foliar fungal pathogen, Cochliobolus heterostrophus.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Proteínas Fúngicas/genética , Peptídeo Sintases/genética , Trichoderma/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos , Família Multigênica , Peptídeo Sintases/metabolismo , Sesquiterpenos/metabolismo , Trichoderma/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
2.
J Agric Food Chem ; 66(49): 12961-12966, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380850

RESUMO

A highly virulent race 4 genotype of Fusarium oxysporum f. sp. vasinfectum (Fov) was identified for the first time in the western hemisphere in 2002 in cotton fields in the San Joaquin Valley of California. The Gossypium barbadense L. cotton cultivars 'Seabrook Sea Island 12B2' ('SBSI') and 'Pima S-6' are resistant to Fov race 4. Active defense responses were quantitated by monitoring the accumulation of antimicrobial terpenoids (i.e., phytoalexins) in inoculated stem stele tissue in these cultivars. The increase in the concentration of the most toxic phytoalexins was statistically faster after 24 h in 'SBSI' compared to 'Pima S-6'. The sesquiterpenoid hemigossylic acid lactone, which was observed for the first time in nature, also accumulated in diseased plants. Neither hemigossylic acid lactone nor the disesquiterpenoids gossypol, gossypol-6-methyl ether, and gossypol-6,6'-dimethyl ether showed toxicity to Fov. Segregation of F2 progeny from 'SBSI' × 'Pima S-6' crosses gave a few highly susceptible plants and a few highly resistant plants, indicating separate genes for resistance in the two cultivars.


Assuntos
Resistência à Doença , Fusarium , Gossypium/microbiologia , Doenças das Plantas/microbiologia , California , Fusarium/efeitos dos fármacos , Fusarium/genética , Genótipo , Gossypium/imunologia , Gossypium/metabolismo , Gossipol/análogos & derivados , Gossipol/análise , Gossipol/toxicidade , Doenças das Plantas/imunologia , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Sesquiterpenos/toxicidade , Fitoalexinas
3.
J Chem Ecol ; 43(10): 996-1006, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28986689

RESUMO

Fusaric acid (FA) produced by Fusarium oxysporum plays an important role in disease development in plants, including cotton. This non-specific toxin also has antibiotic effects on microorganisms. Thus, one expects a potential pool of diverse detoxification mechanisms of FA in nature. Bacteria and fungi from soils infested with Fusarium and from laboratory sources were evaluated for their ability to grow in the presence of FA and to alter the structure of FA into less toxic compounds. None of the bacterial strains were able to chemically modify FA. Highly FA-resistant strains were found only in Gram-negative bacteria, mainly in the genus of Pseudomonas. The FA resistance of the Gram-negative bacteria was positively correlated with the number of predicted genes for FA efflux pumps present in the genome. Phylogenetic analysis of predicted FA resistance proteins (FUSC, an inner membrane transporter component of the efflux pump) revealed that FUSC proteins having high sequence identities with the functionally characterized FA resistance protein FusC or Fdt might be the major contributors of FA resistance. In contrast, most fungi converted FA to less toxic compounds regardless of the level of FA resistance they exhibited. Five derivatives were detected, and the detoxification of FA involved either oxidative reactions on the butyl side chain or reductive reactions on the carboxylic acid group. The production of these metabolites from widely different phyla indicates that resistance to FA by altering its structure is highly conserved. A few FA resistant saprophytic or biocontrol strains of fungi were incapable of altering FA, indicating a possible involvement of efflux transporters. Deployment of both efflux and derivatization mechanisms may be a common feature of fungal FA resistance.


Assuntos
Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Ácido Fusárico/metabolismo , Fusarium/fisiologia , Microbiologia do Solo , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Resistência Microbiana a Medicamentos , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Ácido Fusárico/farmacologia , Doenças das Plantas/microbiologia
4.
J Agric Food Chem ; 65(24): 4989-4992, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28538103

RESUMO

Fusarium oxysporum f. sp. vasinfectum race 4 (VCG0114), which causes root rot and wilt of cotton (Gossypium hirsutum and G. barbadense), has been identified recently for the first time in the western hemisphere in certain fields in the San Joaquin Valley of California. This pathotype produces copious quantities of the plant toxin fusaric acid (5-butyl-2-pyridinecarboxylic acid) compared to other isolates of F. oxysporum f. sp. vasinfectum (Fov) that are indigenous to the United States. Fusaric acid is toxic to cotton plants and may help the pathogen compete with other microbes in the soil. We found that a laboratory strain of the fungus Mucor rouxii converts fusaric acid into a newly identified compound, 8-hydroxyfusaric acid. The latter compound is significantly less phytotoxic to cotton than the parent compound. On the basis of bioassays of hydroxylated analogues of fusaric acid, hydroxylation of the butyl side chain of fusaric acid may affect a general detoxification of fusaric acid. Genes that control this hydroxylation may be useful in developing biocontrol agents to manage Fov.


Assuntos
Ácido Fusárico/metabolismo , Fusarium/fisiologia , Gossypium/microbiologia , Mucor/metabolismo , Doenças das Plantas/microbiologia , Toxinas Biológicas/metabolismo , Biotransformação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Fusárico/química , Ácido Fusárico/toxicidade , Estrutura Molecular , Mucor/genética , Microbiologia do Solo , Toxinas Biológicas/toxicidade
5.
Phytochemistry ; 115: 59-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25794893

RESUMO

Naturally occurring terpenoid aldehydes from cotton, such as hemigossypol, gossypol, hemigossypolone, and the heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominantly found in the glands. Differential screening identified a cytochrome P450 cDNA clone (CYP82D109) from a Gossypium hirsutum cultivar that hybridized to mRNA from glanded cotton but not glandless cotton. Both the D genome cotton Gossypium raimondii and A genome cotton Gossypium arboreum possessed three additional paralogs of the gene. G. hirsutum was transformed with a RNAi construct specific to this gene family and eight transgenic plants were generated stemming from at least five independent transformation events. HPLC analysis showed that RNAi plants, when compared to wild-type Coker 312 (WT) plants, had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels in the terminal leaves, respectively. Analysis of volatile terpenes by GC-MS established presence of an additional terpene (MW: 218) from the RNAi leaf extracts. The (1)H and (13)C NMR spectroscopic analyses showed this compound was δ-cadinen-2-one. Double bond rearrangement of this compound gives 7-hydroxycalamenene, a lacinilene C pathway intermediate. δ-Cadinen-2-one could be derived from δ-cadinene via a yet to be identified intermediate, δ-cadinen-2-ol. The RNAi construct of CYP82D109 blocks the synthesis of desoxyhemigossypol and increases the induction of lacinilene C pathway, showing that these pathways are interconnected. Lacinilene C precursors are not constitutively expressed in cotton leaves, and blocking the gossypol pathway by the RNAi construct resulted in a greater induction of the lacinilene C pathway compounds when challenged by pathogens.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Gossypium , Gossipol , Plantas Geneticamente Modificadas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , Gossypium/química , Gossypium/genética , Gossypium/metabolismo , Gossipol/análogos & derivados , Gossipol/química , Gossipol/metabolismo , Gossipol/farmacologia , Folhas de Planta/metabolismo , Interferência de RNA , Sesquiterpenos/metabolismo , Terpenos/metabolismo
6.
Microbiology (Reading) ; 161(Pt 4): 875-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25627440

RESUMO

Fusaric acid (FA) is a key component in virulence and symptom development in cotton during infection by Fusarium oxysporum. A putative major facilitator superfamily (MFS) transporter gene was identified downstream of the polyketide synthase gene responsible for the biosynthesis of FA in a region previously believed to be unrelated to the known FA gene cluster. Disruption of the transporter gene, designated FUBT, resulted in loss of FA secretion, decrease in FA production and a decrease in resistance to high concentrations of FA. Uptake of exogenous FA was unaffected in the disruption transformants, suggesting that FA enters the cell in Fusarium by an independent mechanism. Thus, FUBT is involved both in the extracellular transport of FA and in resistance of F. oxysporum to this non-specific toxin. A potential secondary resistance mechanism, the production of FA derivatives, was observed in FUBT deletion mutants. Molecular analysis of key biochemical processes in the production of FA could lead to future host plant resistance to Fusarium pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Fusárico/metabolismo , Fusarium/metabolismo , Gossypium/microbiologia , Proteínas de Bactérias/genética , Transporte Biológico , Espaço Extracelular/metabolismo , Fusarium/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Fenótipo , Doenças das Plantas/microbiologia
7.
J Chem Ecol ; 40(1): 84-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24352475

RESUMO

The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA), which is also toxic to many microorganisms. An Aspergillus tubingensis strain with high tolerance to FA was isolated from soil and designated as CDRAt01. HPLC analysis of culture filtrates from A. tubingensis isolate CDRAt01 grown with the addition of FA indicated the formation of a metabolite over time that was associated with a decrease of FA. Spectral analysis and chemical synthesis confirmed the compound as 5-butyl-2-pyridinemethanol, referred to here as fusarinol. The phytotoxicity of fusarinol compared to FA was measured by comparing necrosis induced in cotton (Gossypium hirsutum L. cv. Coker 312) cotyledons. Fusarinol was significantly less phytotoxic than FA. Therefore, the A. tubingensis strain provides a novel detoxification mechanism against FA which may be utilized to control Fusarium wilt.


Assuntos
Aspergillus/metabolismo , Ácido Fusárico/metabolismo , Piridinas/metabolismo , Aspergillus/fisiologia , Bioensaio , Biotransformação , Cotilédone/efeitos dos fármacos , Ácido Fusárico/toxicidade , Fusarium/metabolismo , Inativação Metabólica , Cinética , Piridinas/síntese química , Piridinas/toxicidade
8.
J Agric Food Chem ; 60(10): 2594-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22369216

RESUMO

Gossypol is a dimeric sesquiterpenoid first identified in cottonseed, but found in various tissues in the cotton plant including the seed. From its first discovery, it was assumed that hemigossypol was the biosynthetic precursor of gossypol. Previous studies established that peroxidase (either from horseradish or from cottonseed) converts hemigossypol to gossypol. However, hemigossypol has never been identified in healthy cottonseed. In a temporal study using HPLC and LC-MS, hemigossypol was identified in the developing cotton embryo. It was shown to concomitantly accumulate until 40 days postanthesis (dpa) with gossypol and with transcripts of δ-cadinene synthase and 8-hydroxy-δ-cadinene synthase, genes involved in the biosynthesis of hemigossypol and gossypol. After 40 dpa, hemigossypol and its biosynthetic gene transcript levels declined, whereas the gossypol level remained almost unchanged until the bolls were open. These results provide further evidence to support the previous findings that establish hemigossypol as the biosynthetic precursor of gossypol.


Assuntos
Gossypium/metabolismo , Gossipol/biossíntese , Sementes/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Gossypium/química , Gossypium/enzimologia , Gossypium/crescimento & desenvolvimento , Gossipol/análise , Isomerases/metabolismo , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/metabolismo
9.
Can J Microbiol ; 57(11): 874-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22004096

RESUMO

A unique biotype of the Fusarium wilt pathogen, Fusarium oxysporum Schlecht. f.sp. vasinfectum (Atk) Sny. & Hans., found in Australia in 1993 is favored by neutral or alkaline heavy soils and does not require plant parasitic nematodes to cause disease. This makes it a threat to 4-6 million acres of USA Upland cotton ( Gossypium hirsutum L.) that is grown on heavy alkaline soil and currently is not affected by Fusarium wilt. In 2001-2002, several shiploads of live cottonseed were imported into California for dairy cattle feed. Thirteen F. oxysporum f.sp. vasinfectum isolates and four isolates of a Fusarium spp. that resembled F. oxysporum were isolated from the imported cottonseed. The isolates, designated by an AuSeed prefix, formed four vegetative compatibility groups (VCG) all of which were incompatible with tester isolates for 18 VCGs found in the USA. Isolate AuSeed14 was vegetatively compatible with the four reference isolates of Australian biotype VCG01111. Phylogenetic analyses based on EF-1α, PHO, BT, Mat1-1, and Mat1-2 gene sequences separated the 17 seed isolates into three lineages (race A, race 3, and Fusarium spp.) with AuSeed14 clustering into race 3 lineage or race A lineage depending on the genes analyzed. Indel analysis of the EF-1α gene sequences revealed a close evolutionary relationship among AuSeed14, Australian biotype reference isolates, and the four Fusarium spp. isolates. The Australian seed isolates and the four Australian biotype reference isolates caused disease with root-dip inoculation, but not with stem-puncture inoculation. Thus, they were a vascular incompetent pathotype. In contrast, USA race A lineage isolates readily colonized vascular tissue and formed a vascular competent pathotype when introduced directly into xylem vessels. The AuSeed14 isolate was as pathogenic as the Australian biotype, and it or related isolates could cause a severe Fusarium wilt problem in USA cotton fields if they become established.


Assuntos
Ração Animal/microbiologia , Fusarium/classificação , Fusarium/patogenicidade , Gossypium/microbiologia , Filogenia , Animais , Austrália , California , Bovinos , Fusarium/genética , Fusarium/isolamento & purificação , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Transporte de Fosfato/genética , Tubulina (Proteína)/genética
10.
J Agric Food Chem ; 59(10): 5351-6, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21495723

RESUMO

Fusarium oxysporum is a fungal pathogen that attacks many important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentrations of the phytotoxin fusaric acid. Thus, fusaric acid may be a critical component in the pathogenicity of these biotypes. This study investigated the biosynthesis of fusaric acid using (13)C-labeled substrates including [1,2-(13)C(2)]acetate as well as (13)C- and (15)N-labeled aspartate and [(15)N]glutamine. The incorporation of labeled substrates is consistent with the biosynthesis of fusaric acid from three acetate units at C5-C6, C7-C8, and C9-C10, with the remaining carbons being derived from aspartate via oxaloacetate and the TCA cycle; the oxaloacetate originates in part by transamination of aspartate, but most of the oxaloacetate is derived by deamination of aspartate to fumarate by aspartase. The nitrogen from glutamine is more readily incorporated into fusaric acid than that from aspartate.


Assuntos
Ácido Fusárico/biossíntese , Fusarium/metabolismo , Espectroscopia de Ressonância Magnética , Acetatos/metabolismo , Ácido Aspártico/metabolismo , Isótopos de Carbono , Glutamina/metabolismo , Gossypium/microbiologia , Isótopos de Nitrogênio
11.
J Agric Food Chem ; 57(2): 566-71, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19113939

RESUMO

Gossypol occurs naturally in the seed, foliage, and roots of the cotton plant ( Gossypium ) as atropisomers due to restricted rotation around the binaphthyl bond. The atropisomers differ in their biological activities. (-)-(R)-Gossypol is more toxic and exhibits significantly greater anticancer activity than the (+)-(S)-atropisomer. Most commercial Upland ( Gossypium hirsutum ) cottonseeds have an (R)- to (S)-gossypol ratio of approximately 2:3, but some Pima ( Gossypium barbadense ) seeds have an excess of (R)-gossypol. There is no known source of cottonseed with an (R)- to (S)-gossypol ratio of greater than approximately 70:30. Cottonseed with a high percentage of (R)-gossypol would be of value to the pharmaceutical industry. It was theorized that G. barbadense cotton might be a source of this desirable high (R)-gossypol seed trait. There are 671 different accessions of G. barbadense in the U.S. Cotton Germplasm Collection, few of which had been characterized with respect to their (R)- to (S)-gossypol ratio. This work completed that analysis and found considerable variation in the atropisomer ratio. Approximately half of the accessions have an excess of (R)-gossypol, and 52 accessions have essentially a 1:1 ratio. The highest percentage of (R)-gossypol was found in accessions GB26 (68.2%) and GB283 (67.3%). Surprisingly, five accessions had 5% or less of (R)-gossypol: GB516 (5.0%), GB761 (4.5%), GB577 (4.3%), GB719 (3.7%), and GB476 (2.3%). These accessions may be useful in a breeding program to reduce (R)-gossypol in Pima seed, which is a concern to the dairy industry because of the toxicity and male antifertility activity of this atropisomer. Also, GB710 was devoid of gossypol.


Assuntos
Gossypium/química , Gossipol/química , Sementes/química , Cruzamentos Genéticos , Genótipo , Gossypium/genética , Sementes/genética
12.
Environ Entomol ; 37(5): 1081-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19036185

RESUMO

Gossypol is a constituent of the lysigenous foliar glands of cotton plants and is also found in glands in cottonseed. Gossypol exists as enantiomers because of restricted rotation around the binaphthyl bond. The biological activities of the enantiomers differ. For example, (+)-gossypol can be fed safely to nonruminants such as chickens, but (-)-gossypol cannot. Most commercial cottonseed contain a (+)- to (-)-gossypol ratio of approximately 3:2. Conventional breeding techniques can be used to develop cottonseed that contains >95% (+)-gossypol. Notably, gossypol protects the plant from insect herbivores. Herein, we report the effect of various forms of gossypol on Heliothis virescens (Fabricius) larvae. Three levels (0.16, 0.24, and 0.32%) of racemic, (+)-, and (-)-gossypol were added to artificial rearing diets and were fed to H. virescens larvae. All 0.24 and 0.32% gossypol diets significantly lengthened days-to-pupation and decreased pupal weight compared with the control. Percent survival was significantly less for larvae reared on diets containing 0.24% of all three forms of gossypol as compared with the control diet. (+)-Gossypol was superior or equivalent to racemic gossypol as measured by the three parameters studied. Higher concentrations of all gossypol forms were required to reduce survival and pupal weights and increase days-to-pupation for larvae of H. virescens larvae compared with the concentration needed to affect larvae of Helicoverpa zea (Boddie), which was studied previously. These results indicate that current efforts to breed cotton lines containing mostly (+)-gossypol in seed should not significantly impair the plant's natural defenses against insects.


Assuntos
Gossipol/farmacologia , Metamorfose Biológica/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Animais , Gossypium/parasitologia , Isomerismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento
13.
Eukaryot Cell ; 7(10): 1699-711, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18676950

RESUMO

The predominant cell wall melanin of Wangiella dermatitidis, a black fungal pathogen of humans, is synthesized from 1,8-dihydroxynaphthalene (D2HN). An early precursor, 1,3,6,8-tetrahydroxynaphthalene (T4HN), in the pathway leading to D2HN is reportedly produced directly as a pentaketide by an iterative type I polyketide synthase (PKS). In contrast, the bluish-green pigment in Aspergillus fumigatus is produced after the enzyme Ayg1p converts the PKS product, the heptaketide YWA1, to T4HN. Previously, we created a new melanin-deficient mutant of W. dermatitidis, WdBrm1, by random molecular insertion. From this strain, the altered gene WdYG1 was cloned by a marker rescue strategy and found to encode WdYg1p, an ortholog of Ayg1p. In the present study, two gene replacement mutants devoid of the complete WdYG1 gene were derived to eliminate the possibility that the phenotype of WdBrm1 was due to other mutations. Characterization of the new mutants showed that they were phenotypically identical to WdBrm1. Chemical analyses of mutant cultures demonstrated that melanin biosynthesis was blocked, resulting in the accumulation of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (AT4HN) and its oxidative product 3-acetylflaviolin in the culture media. When given to an albino W. dermatitidis strain with an inactivated WdPKS1 gene, AT4HN was mostly oxidized to 3-acetylflaviolin and deacetylated to flaviolin. Under reduced oxygen conditions, cell-free homogenates of the albino converted AT4HN to D2HN. This is the first report of evidence that the hexaketide AT4HN is a melanin precursor for T4HN in W. dermatitidis.


Assuntos
Exophiala/metabolismo , Melaninas/biossíntese , Naftóis/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Exophiala/química , Exophiala/classificação , Exophiala/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/metabolismo , Dados de Sequência Molecular , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Alinhamento de Sequência
14.
Phytochemistry ; 69(18): 3038-42, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18639908

RESUMO

The terpenoid gossypol, a secondary metabolite found in the cotton plant, is synthesized by a free radical dimerization of hemigossypol. Gossypol exists as an atropisomeric mixture because of restricted rotation around the central binaphthyl bond. The dimerization of hemigossypol is regiospecific in cotton. In the case of some moco cotton, the dimerization also exhibits a high level of stereoselectivity. The mechanism that controls this stereoselective dimerization is poorly understood. In this paper, we demonstrate that a dirigent protein controls this stereoselective dimerization process. A partially purified protein preparation from cotton flower petals, which by itself is unable to convert hemigossypol to gossypol, converts hemigossypol with a 30% atropisomeric excess into (+)-gossypol when combined with an exogenous laccase, which by itself produces racemic gossypol.


Assuntos
Gossypium/metabolismo , Gossipol/química , Gossipol/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Gossipol/análogos & derivados , Estrutura Molecular , Proteínas de Plantas/genética
15.
Phytochemistry ; 67(21): 2376-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16996095

RESUMO

The isolation and structure of a phytoalexin, malvone A (2-methyl-3-methoxy-5,6-dihydroxy-1,4-naphthoquinone) is reported. Malvone A formation is induced in Malva sylvestris L. by the plant pathogen Verticillium dahliae. In a turbimetric assay for toxicity to V. dahliae, it had an ED50 value of 24 microg/ml. The structure of malvone A was determined by MS and NMR spectroscopy, and by X-ray crystallographic analysis. The X-ray analysis showed water molecules were located in channels that run along the a-axis.


Assuntos
Malva/química , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Terpenos/química , Terpenos/isolamento & purificação , Malva/classificação , Malva/microbiologia , Estrutura Molecular , Doenças das Plantas , Sesquiterpenos , Verticillium/fisiologia , Fitoalexinas
16.
Phytochemistry ; 67(13): 1304-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16806327

RESUMO

3-Hydroxy-alpha-calacorene was identified in extracts from cold-shocked seedlings of cotton (Gossypium hirsutum L.) and kenaf (Hibiscus cannabinus L.), both of which are members of the Malvaceae family. (-)-3-Hydroxy-alpha-calacorene was isolated from Heterotheca inuloides Cass. (Asteraceae). HPLC on a chiral stationary phase column showed that the 3-hydroxy-alpha- calacorene from cotton and kenaf had the same relative configuration, while that from H. inuloides was of the opposite configuration. X-ray crystallographic analysis established the absolute configuration of the compound in H. inuloides as (8R)-(-)-3-hydroxy-alpha-calacorene.


Assuntos
Sesquiterpenos/química , Terpenos/química , Asteraceae/química , Cromatografia Líquida de Alta Pressão , Gossypium/química , Hibiscus/química , Estrutura Molecular , Extratos Vegetais/química , Sesquiterpenos/isolamento & purificação , Terpenos/isolamento & purificação
17.
J Chem Ecol ; 32(5): 959-68, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16739016

RESUMO

Gossypol is a sesquiterpene that occurs naturally in seed and other parts of the cotton plant. Because of restricted rotation around the binaphthyl bond, it occurs naturally as enantiomeric mixtures with (+)-gossypol to (-)-gossypol ratios that vary between 97:3 and 31:69. Commercial cotton varieties (Gossypium hirsutum) normally exhibit an approximate 3:2 ratio. (+)-Gossypol is significantly less toxic than (-)-gossypol to nonruminant animals; thus, cottonseed containing high levels of (+)-gossypol might be safely fed to nonruminants. Gossypol, however, is an important component in the cotton plant's defense against insect herbivores, but it is not known how cotton plants that exhibit high levels of (+)-gossypol in the foliage might be affected by insect herbivory. To address this question, 1-d-old Helicoverpa zea larvae were fed diets with 0.16, 0.20, and 0.24% racemic, (+)-, and (-)-gossypol. Larval pupal weights, days-to-pupation, and survival were adversely affected by all gossypol diets compared with the control diet. Statistical differences were determined by comparing the compounds among themselves at the three levels and between the three compounds at the same level. When the compounds were compared among themselves, no large differences were observed in pupal weights or in days-to-pupation among any of the diets. Among the three compounds, at the 0.16% level, the diet containing racemic gossypol was the most effective at reducing survival. At the 0.20 and 0.24% levels of racemic (+)- and (-)-gossypol, survival was not statistically different. The overall results indicate that (+)-gossypol is as inhibitory to H. zea larvae as racemic or (-)-gossypol, and thus, cotton plants containing predominantly the (+)-enantiomer in foliage may maintain significant defense against insect herbivory.


Assuntos
Gossipol/toxicidade , Mariposas/fisiologia , Ração Animal , Animais , Ecossistema , Gossipol/química , Isomerismo , Larva/fisiologia , Sementes
18.
J Agric Food Chem ; 54(5): 1633-7, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16506812

RESUMO

Gossypol is an allelochemical that occurs naturally throughout the cotton plant as an enantiomeric mixture. Gossypol and related terpenoids protect the plant from some insect herbivores. Cottonseed has a high protein content, but it is underutilized because (-)-gossypol, which is toxic to nonruminants, occurs in the seed along with (+)-gossypol. Commercial Upland cottons usually have an approximate 3:2 (+)- to (-)-gossypol ratio in the seed, but plants can be bred with <8% (-)-gossypol using accessions of Gossypium hirsutum var. marie galante as parents. We report the (+)- and (-)-gossypol ratios and the concentration of related terpenoids in the stems, leaves, and roots of four accessions of marie galante that show high, moderate, and near normal levels of (+)-gossypol in the seed; we compare these values to the commercial cultivar Stoneville 474, which has 62% (+)-gossypol in the seed. In the marie galante accessions 2452 and 2425 that have the highest levels of (+)-gossypol in the seed, the percent (+)-gossypol and the concentration of gossypol and the related terpenoids were significantly higher (P = 0.05) in the stems and leaves as compared to Stoneville 474. Our analysis indicates that progeny from accessions 2452 and 2425 that retain these traits should not be overly susceptible to herbivorous insects.


Assuntos
Gossypium/química , Gossipol/análise , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Animais , Cruzamento , Gossypium/genética , Gossipol/química , Insetos , Isomerismo , Doenças das Plantas/estatística & dados numéricos , Terpenos/análise
19.
J Agric Food Chem ; 53(16): 6266-71, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16076104

RESUMO

Gossypol occurs as a mixture of enantiomers in cottonseed. These enantiomers exhibit different biological activities. The (-)-enantiomer is toxic to animals, but it has potential medicinal uses. Therefore, cottonseed with >95% (-)-gossypol could have biopharmaceutical applications. The (+)-enantiomer shows little, if any, toxicity to nonruminant animals. Thus, cottonseed with >95% (+)-gossypol could be more readily utilized as a feed for nonruminants. The (+)- to (-)-gossypol ratio in commercial Upland (Gossypium hirsutum) cottonseed is usually about 3:2, whereas that in commercial Pima cottonseed (Gossypium barbadense) is approximately 2:3. Herein are reported the (+)- to (-)-gossypol ratios in the seed from 28 wild species of cotton (194 accessions), 94 accessions of G. hirsutum var. marie-galante, and 3 domesticated species (11 accessions). It was found that some or all of the accessions of Gossypium darwinii, Gossypium sturtianum, Gossypium areysianum, Gossypium longicalyx, Gossypium harknessii, and Gossypium costulatum produce an excess of (-)-gossypol but none >65%. At least one accession of Gossypium anomalum, Gossypium mustelinum, Gossypium gossypioides, and Gossypium capitis-viridis contained >94% (+)-gossypol. One of the 94 accessions of G. hirsutum var. marie-galante (i.e., no. 2469) contained 97% (+)-gossypol.


Assuntos
Gossypium/química , Gossipol/análise , Gossipol/química , Ração Animal , Gossipol/toxicidade , Sementes/química , Estereoisomerismo , Relação Estrutura-Atividade
20.
J Nat Prod ; 67(9): 1571-3, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15387662

RESUMO

Thespesia populnea grows as a small tree or large shrub that occurs throughout Polynesia. We report the isolation of 7-hydroxycadalene (6), thespesenone (7), and dehydrooxoperezinone-6-methyl ether (8) from its red heartwood. Compounds 7 and 8 are reported for the first time in nature. Several other sesquiterpene quinones were isolated including mansonone E (4), mansonone F (3), mansonone D (1), mansonone G (9), mansonone M (10), and thespesone (4); the (13)C NMR spectra of these compounds are reported for the first time.


Assuntos
Malvaceae/química , Naftalenos/isolamento & purificação , Plantas Medicinais/química , Sesquiterpenos/isolamento & purificação , Estrutura Molecular , Naftalenos/química , Naftoquinonas/química , Polinésia , Sesquiterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA