Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Sci Total Environ ; 945: 174001, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879040

RESUMO

Micro- and nano-plastics (MNPs) in the soil can impact the microbial diversity within rhizospheres and induce modifications in plants' morphological, physiological, and biochemical parameters. However, a significant knowledge gap still needs to be addressed regarding the specific effects of varying particle sizes and concentrations on the comprehensive interplay among soil dynamics, root exudation, and the overall plant system. In this sense, different omics techniques were employed to clarify the mechanisms of the action exerted by four different particle sizes of polyethylene plastics considering four different concentrations on the soil-roots exudates-plant system was studied using lettuce (Lactuca sativa L. var. capitata) as a model plant. The impact of MNPs was investigated using a multi-omics integrated approach, focusing on the tripartite interaction between the root metabolic process, exudation pattern, and rhizosphere microbial modulation. Our results showed that particle size and their concentrations significantly modulated the soil-roots exudates-plant system. Untargeted metabolomics highlighted that fatty acids, amino acids, and hormone biosynthesis pathways were significantly affected by MNPs. Additionally, they were associated with the reduction of rhizosphere bacterial α-diversity, following a size-dependent trend for specific taxa. The omics data integration highlighted a correlation between Pseudomonadata and Actinomycetota phyla and Bacillaceae family (Peribacillus simplex) and the exudation of flavonoids, phenolic acids, and lignans in lettuce exposed to increasing sizes of MNPs. This study provides a novel insight into the potential effects of different particle sizes and concentrations of MNPs on the soil-plant continuum, providing evidence about size- and concentration-dependent effects, suggesting the need for further investigation focused on medium- to long-term exposure.


Assuntos
Lactuca , Metaboloma , Microplásticos , Raízes de Plantas , Rizosfera , Poluentes do Solo , Lactuca/microbiologia , Raízes de Plantas/microbiologia , Poluentes do Solo/metabolismo , Microplásticos/toxicidade , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Tamanho da Partícula
2.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513516

RESUMO

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Assuntos
Lactuca , Microplásticos , Microplásticos/análise , Microplásticos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Solo/química
3.
Environ Sci Pollut Res Int ; 31(9): 13141-13154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240981

RESUMO

Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.


Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Mutagenicidade
4.
Environ Pollut ; 344: 123213, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158010

RESUMO

Microplastics (MPs) are recognized as emergent pollutants and have become a significant environmental concern, especially when combined with other contaminants. In this study, earthworms, specifically Eisenia andrei, were exposed to MPs (at a concentration of 10 µg kg-1 of soil), herbicide 2,4-D (7 mg kg-1 of soil), and a combination of the two for 7 and 14 days. The chemical uptake in the earthworms was measured, and the bacterial and archaeal diversities in both the soil and earthworm gut were analyzed, along with the metabolomic profiles. Additionally, data integration of the two omics approaches was performed to correlate changes in gut microbial diversity and the different metabolites. Our results demonstrated that earthworms ingested MPs and increased 2,4-D accumulation. More importantly, high-throughput sequencing revealed a shift in microbial diversity depending on single or mixture exposition. Metabolomic data demonstrated an important modulation of the metabolites related to oxidative stress, inflammatory system, amino acids synthesis, energy, and nucleic acids metabolism, being more affected in case of co-exposure. Our investigation revealed the potential risks of MPs and 2,4-D herbicide combined exposure to earthworms and soil fertility, thus broadening our understanding of MPs' toxicity and impacts on terrestrial environments.


Assuntos
Herbicidas , Microbiota , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Microplásticos/metabolismo , Plásticos/toxicidade , Oligoquetos/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/análise , Herbicidas/toxicidade , Herbicidas/metabolismo , Fenoxiacetatos/metabolismo , Metaboloma , Solo/química , Ácido 2,4-Diclorofenoxiacético/toxicidade
5.
Front Plant Sci ; 14: 1236199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711298

RESUMO

The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.

6.
Plant Sci ; 337: 111873, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739018

RESUMO

This study aimed to assess the effectiveness of plant growth-promoting rhizobacteria (PGPR; Pseudomonas strain So_08) and arbuscular mycorrhizal fungi (AMF; Rhizoglomus irregulare BEG72 and Funneliformis mosseae BEG234) in mitigating the detrimental effects of cadmium (Cd) and zinc (Zn) stress in tomato plants. Plant biomass, root morphology, leaf relative water content, membrane stability, photosynthetic performance, chlorophyll content, and heavy metals (HMs) accumulation were determined. Furthermore, an ionomic profile was conducted to investigate whether microbial inoculants affected the uptake and allocation of macro- and micronutrients. Metabolomics with pathway analysis of both roots and leaves was performed to unravel the mechanisms underlying the differential responses to HMs stress. The findings revealed that the levels of HMs did not significantly affect plant growth parameters; however, they affected membrane stability, photosynthetic performance, nutrient allocation, and chlorophyll content. Cadmium was mainly accumulated in roots, whilst Zn exhibited accumulation in various plant organs. Our findings demonstrate the beneficial effects of PGPR and AMF in mitigating Cd and Zn stress in tomato plants. The microbial inoculations improved physiological parameters and induced differential accumulation of macro- and micronutrients, modulating nutrient uptake balance. These results provide insights into the mechanisms underlying the plant-microbe interactions and highlight the differential modulation of the biosynthetic pathways of secondary metabolites related to oxidative stress response, membrane lipids stability, and phytohormone crosstalk.

7.
Front Microbiol ; 14: 1221633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601382

RESUMO

Plant growth-promoting rhizobacteria (PGPR) with antagonistic activity toward plant pathogenic fungi are valuable candidates for the development of novel plant protection products based on biocontrol activity. The very first step in the formulation of such products is to screen the potential effectiveness of the selected microorganism(s). In this study, non-pathogenic rhizobacteria were isolated from the rhizosphere of tomato plants and evaluated for their biocontrol activity against three species of mycotoxin-producing Alternaria. The assessment of their biocontrol potential involved investigating both fungal biomass and Alternaria toxin reduction. A ranking system developed allowed for the identification of the 12 best-performing strains among the initial 85 isolates. Several rhizobacteria showed a significant reduction in fungal biomass (up to 76%) and/or mycotoxin production (up to 99.7%). Moreover, the same isolates also demonstrated plant growth-promoting (PGP) traits such as siderophore or IAA production, inorganic phosphate solubilization, and nitrogen fixation, confirming the multifaceted properties of PGPRs. Bacillus species, particularly B. amyloliquefaciens and two strains of B. subtilis, showed the highest efficacy in reducing fungal biomass and were also effective in lowering mycotoxin production. Isolates such as Enterobacter ludwigii, Enterobacter asburiae, Serratia nematodiphila, Pantoea agglomerans, and Kosakonia cowanii showed moderate efficacy. Results suggest that by leveraging the diverse capabilities of different microbial strains, a consortium-based approach would provide a broader spectrum of effectiveness, thereby signaling a more encouraging resolution for sustainable agriculture and addressing the multifaceted nature of crop-related biotic challenges.

8.
Foods ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238842

RESUMO

Cocoa bean fermentation is carried out in different production areas following various methods. This study aimed to assess how the bacterial and fungal communities were affected by box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity, while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to identify potential interesting pathways. In conclusion, there were noticeable differences between the three different fermentation methods. Due to its limited microbial diversity and the presence of microorganisms that guarantee good fermentation, the box method was found to be preferable. Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated cocoa beans and to better understand the technological processes useful to obtain a standardized end-product.

9.
Food Chem Toxicol ; 176: 113779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062331

RESUMO

This study aims to provide information on the behaviour and biopersistence rate (BP) of metallic nanoparticles (Ag-NPs, TiO2-NPs, ZnO-NPs) naturally occurring in canned seafood and subjected to static in vitro digestion. Single particle ICP-MS analysis was performed to determine NPs distribution and concentrations in oral, gastric, and intestinal digests. Depending on the conditions of the digestive phase and the sample matrix, the phenomena of agglomeration and dispersion were highlighted and confirmed by Dynamic Light Scattering (DLS) technique. In standard suspensions, Ag-NPs had lower biopersistence (BP) than ZnO and TiO2-NPs (BP 34%, 89% and >100%, respectively). Among Ag-NPs and TiO2-NPs naturally present in the food matrix, those in canned tuna were more degradable than those in canned clam (BP Ag-NPs 36% vs. > 100%; BP TiO2-NPs 96% vs. > 100%), while BP ZnO-NPs showed high biopersistence in both seafood matrix (>100%). The biopersistence rates were higher than the recommended limit set by European Food Safety Authority (EFSA) (12%), referred to nanotechnologies to be applied in the food and feed chain, thus the investigated naturally occurring NPs cannot be considered readily degradable.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Nanopartículas/análise , Titânio , Alimentos Marinhos/análise , Trato Gastrointestinal
10.
J Hazard Mater ; 453: 131331, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060751

RESUMO

Metallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Metagenômica , Fermentação , Nanopartículas Metálicas/toxicidade , Titânio , Metabolômica , Escherichia coli , Digestão
11.
Microorganisms ; 11(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36985161

RESUMO

Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).

12.
Antioxidants (Basel) ; 12(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830078

RESUMO

The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.

13.
Food Res Int ; 162(Pt A): 111944, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461200

RESUMO

In sub-Saharan Africa, malnutrition occurs in various forms going from micronutrient deficiency (MND) to severe malnutrition. In this scenario, African indigenous leafy vegetables (AILVs) could help in alleviating hunger and food insecurity. Principally used by smallholder farmers as subsistence crops thanks to the ease of growing, AILVs have been reported to have valuable nutrient content. Nevertheless, rough handling coupled with microbial activities could lead to phyllosphere deterioration, hence leading to spoilage events that make the sustainable supply and consumption of AILVs difficult. Reviewing the literature regarding AILVs' phyllosphere microbiota, some bacteria such as Pseudomonadaceae, Enterobacteriaceae, and lactic acid bacteria (LAB) were commonly found. Their ability to deteriorate vegetables is known, thus stressing the necessity to valorize these commodities. In this review, fermentation was deepened as an inexpensive form of food processing to valorize AILVs, modulating the phyllosphere microbiota in favor of fermenting microorganisms. The literature review revealed that traditional methods implying alkaline fermentation lower the levels of toxigenic compounds in AILVs such as cyanhydric acid. Methods involving lactic acid bacteria (LAB) fermentation with beneficial LAB were able to control the fermentation, hindering the proliferation of spoilage (i.e. Pseudomonadaceae) and potentially pathogenic bacteria (i.e. Enterobacteriaceae). Aside, the improvement of nutritional content is achieved, obtaining increased levels of B-group vitamins, carotenoids, and the reduction of antinutrient and toxic compounds for certain AILVs. Furthermore, the AILVs' shelf life is also prolonged, thus further confirming that the final products are valorized by the fermentation processes. Howbeit, this review also points out some weaknesses in the methods. Indeed, alkaline fermentation can allow the growth of toxin-producing Bacillus spp. that can jeopardize the consumers' health. While the unpredictability of spontaneous LAB fermentation caused in some cases the resilience of certain pathogens such as Enterobacteriaceae. More studies involving alternative ways to inoculate LAB starters such as back slopping might be useful to perfect the fermentation methods and finally valorize AILVs.


Assuntos
Lactobacillales , Microbiota , Verduras , Folhas de Planta , Fermentação , Enterobacteriaceae
14.
Front Microbiol ; 13: 1035561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439796

RESUMO

While bioplastics are gaining wide interest in replacing conventional plastics, it is necessary to understand whether the treatment of the organic fraction of municipal solid waste (OFMSW) as an end-of-life option is compatible with their biodegradation and their possible role in shaping the microbial communities involved in the processes. In the present work, we assessed the microbiological impact of rigid polylactic acid (PLA) and starch-based bioplastics (SBB) spoons on the thermophilic anaerobic digestion and the aerobic composting of OFMSW under real plant conditions. In order to thoroughly evaluate the effect of PLA and SBB on the bacterial, archaeal, and fungal communities during the process, high-throughput sequencing (HTS) technology was carried out. The results suggest that bioplastics shape the communities' structure, especially in the aerobic phase. Distinctive bacterial and fungal sequences were found for SBB compared to the positive control, which showed a more limited diversity. Mucor racemosus was especially abundant in composts from bioplastics' treatment, whereas Penicillium roqueforti was found only in compost from PLA and Thermomyces lanuginosus in that from SBB. This work shed a light on the microbial communities involved in the OFMSW treatment with and without the presence of bioplastics, using a new approach to evaluate this end-of-life option.

15.
Front Plant Sci ; 13: 907349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941943

RESUMO

Plant Biostimulants (BSs) are a valid supplement to be considered for the integration of conventional fertilization practices. Research in the BS field keeps providing alternative products of various origin, which can be employed in organic and conventional agriculture. In this study, we investigated the biostimulant activity of the eluate obtained as a by-product from the industrial production of lactic acid bacteria on bare agricultural soil. Eluates utilization is in line with the circular economy principle, creating economical value for an industrial waste product. The research focused on the study of physical, chemical, biochemical, and microbiological changes occurring in agricultural soil treated with the biowaste eluate, applied at three different dosages. The final aim was to demonstrate if, and to what extent, the application of the eluate improved soil quality parameters and enhanced the presence of beneficial soil-borne microbial communities. Results indicate that a single application at the two lower dosages does not have a pronounced effect on the soil chemical parameters tested, and neither on the biochemical proprieties. Only the higher dosage applied reported an improvement in the enzymatic activities of ß-glucosidase and urease and in the chemical composition, showing a higher content of total, nitric and ammonia N, total K, and higher humification rate. On the other hand, microbial communities were strongly influenced at all dosages, showing a decrease in the bacterial biodiversity and an increase in the fungal biodiversity. Bioinformatic analysis revealed that some Operative Taxonomic Units (OTUs) promoted by the eluate application, belong to known plant growth promoting microbes. Some other OTUs, negatively influenced were attributed to known plant pathogens, mainly Fusarium spp. Finally, the ecotoxicological parameters were also determined and allowed to establish that no toxic effect occurred upon eluate applications onto soil.

16.
Sci Rep ; 12(1): 12957, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902668

RESUMO

Modulation of animal gut microbiota is a prominent function of probiotics to improve the health and performance of livestock. In this study, a large-scale survey to evaluate the effect of lactic acid bacteria probiotics on shaping the fecal bacterial community structure of feedlot cattle during three experimental periods of the fattening cycle (163 days) was performed. A commercial feedlot located in northwestern Argentina was enrolled with cattle fed mixed rations (forage and increasing grain diet) and a convenience-experimental design was conducted. A pen (n = 21 animals) was assigned to each experimental group that received probiotics during three different periods. Groups of n = 7 animals were sampled at 40, 104 and 163 days and these samples were then pooled to one, thus giving a total of 34 samples that were subjected to high-throughput sequencing. The microbial diversity of fecal samples was significantly affected (p < 0.05) by the administration period compared with probiotic group supplementation. Even though, the three experimental periods of probiotic administration induced changes in the relative abundance of the most representative bacterial communities, the fecal microbiome of samples was dominated by the Firmicutes (72-98%) and Actinobacteria (0.8-27%) phyla, while a lower abundance of Bacteroidetes (0.08-4.2%) was present. Probiotics were able to modulate the fecal microbiota with a convergence of Clostridiaceae, Lachnospiraceae, Ruminococcaceae and Bifidobacteriaceae associated with health and growth benefits as core microbiome members. Metabolic functional prediction comparing three experimental administration periods (40, 104 and 163 days) showed an enrichment of metabolic pathways related to complex plant-derived polysaccharide digestion as well as amino acids and derivatives during the first 40 days of probiotic supplementation. Genomic-based knowledge on the benefits of autochthonous probiotics on cattle gastrointestinal tract (GIT) microbiota composition and functions will contribute to their selection as antibiotic alternatives for commercial feedlot.


Assuntos
Lactobacillales , Microbiota , Probióticos , Animais , Bactérias/genética , Bovinos , Fezes/microbiologia , Probióticos/farmacologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
17.
Physiol Plant ; 174(2): e13679, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35362106

RESUMO

Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits.


Assuntos
Micorrizas , Rizosfera , Bactérias/metabolismo , Metaboloma , Micorrizas/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Microbiologia do Solo , Zea mays/metabolismo
18.
Bioresour Technol ; 351: 126934, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248711

RESUMO

Bioplastics may be collected in the bio-waste treatment, which is often composed of anaerobic digestion and subsequent aerobic composting of the digestates. The aim of this study was to evaluate the degradability of polylactic acid (PLA) and starch-based bioplastics (SBB) spoons under industrial conditions. Biomethane potential (BMP) was measured and biogas production was monitored, while the quality of composts was assessed by phytotoxicity and ecotoxicity tests. The bioplastics disintegration resulted in 65.1 ± 4.6 % for PLA and ≤ 65.0 ± 7.4 % for SBB, not achieving the target set by UNI EN 13,432 standard, and several residues were found in compost. Phytotoxicity tests on seeds reported the lowest Germination Index for PLA elutriate, whereas a potential negative effect of SBB on soil fauna was detected. Further investigation is needed to assess the fate of these ever-growing materials under industrial conditions, and also evaluate the effects of residues in compost.


Assuntos
Compostagem , Anaerobiose , Poliésteres , Solo , Amido
19.
Sci Total Environ ; 810: 151297, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756896

RESUMO

A 3-m thick sediment sequence, found in a limestone mine located in the south of Italy at a depth of ca. 25-30 m from the current ground level, was investigated. Samples from 5 layers were analysed by X-ray diffraction, elemental analysis, Inductively Coupled Plasma Mass Spectrometry and micromorphology. Microbial DNA was analysed by 16S rRNA gene metabarcoding. The main mineral compounds found in the 5 layers were calcite (70-80%) and clay minerals in layers #1 and #5, goethite (75%) and hematite in layer #2, manganese (66%) and iron oxides in layer #3, and almost exclusively goethite in layer #4. Micromorphology data allowed to shed light in understanding whether these sediments formed by subsequent weathering of carbonates and silicates or by migration of soil sediments from the surface, or also by the accumulation of shallow marine sediments occurring between the middle Pliocene and the lower Pleistocene, when the extreme western sector of this area underwent strong subsidence. From the microbiological point of view, upon the 16S rRNA gene analysis, these 5 layers appear to cluster in three groups. Overall, such a distribution suggests that, both in the top (#1) and in bottom layers (#4 and #5), different communities would have undergone in situ reproduction and colonization exploiting metabolically the substrate, whereas the two mid layers would have received bacterial convection by passive transport of percolating waters. At the same time, micromorphological data show that each layer preserved its distinct features to be related to the environmental condition at the time of deposition. The chemical, mineralogical and micromorphological features of the layers and the known physiology of the microbial taxa thereby encountered highlight the possible role of the latter in elucidating the occurrence of certain mineral species as well as the biogeochemistry of elements like Mn and Fe in sediment layers.


Assuntos
Bactérias , Manganês , Bactérias/genética , Carbonatos , Sedimentos Geológicos , RNA Ribossômico 16S , Solo
20.
Int J Food Microbiol ; 362: 109445, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839163

RESUMO

Amaranth (Amaranthus sp.) is a promising indigenous leafy vegetable plant capable of contributing to food security in sub-Saharan Africa, thanks to its adaptability to diverse soils and its drought tolerance. Its edible parts such as leaves are characterized by high nutrient content. Food losses along the supply chain due to spoilage, however, especially of fresh produce is a challenge facing most of the sub-Saharan African countries in tackling food insecurity in the region. This calls for innovative yet inexpensive solutions such as natural fermentation to preserve the quality and safety of the commodity. To demonstrate the feasibility of natural fermentation in the preservation of vegetable amaranth, leaves were submerged (1:0.5 w/v) in distilled water with 3% sucrose and 3% NaCl dissolved. Control batches were prepared using only distilled water (1:0.5 w/v) with amaranth leaves. Samplings of both treated leaves and controls occurred at 0, 24, 48, 72, and 168 h to measure the pH and determine microbial population changes using culture and molecular-based techniques. Furthermore, the effects of treatment on nutritional content were assayed at the end of the process to determine the levels of B-group vitamins, ß-carotene, lutein, and anti-nutrient phytic acid from unfermented fresh air-dried and 3% sucrose and 3% NaCl treated amaranth leaves. Finally, a visive and olfactive analysis was carried out to evaluate the acceptability of the final product. The significant drop of pH and the correct growth of Lactobacillaceae occurred only in treated batches, although Lactococcus was found in both treated and control samples. Furthermore, mean counts observed on selective media for controls and molecular high-throughput sequencing (HTS) analyses confirmed that in control samples, the undesired bacteria represented more than 60% of the microbial population. In treated amaranth leaves the amount of thiamin, riboflavin, vitamin B6, ß-carotene and lutein content were higher compared to the fresh unfermented air-dried leaves, and phytic acid content diminished after 7-days treatment. These findings suggest that treatment of amaranth leaves using 3% sucrose and 3% NaCl does not only preserve the commodity by arresting the growth of undesired microorganisms involved in spoilage and fosters the lactic acid bacteria but also improves the nutritional content of the fermented end product that has been warmly welcomed by panelists.


Assuntos
Amaranthus , Microbiota , Fermentação , Lactobacillaceae , Folhas de Planta , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA