RESUMO
In the recent past, the resonance energy transfer studies using metallic nanoparticles has become a matter of quintessence in modern technology, which considerably extends its applications in probing specific biological and chemical processes. In the present study, metallic-silver nanoparticles of 2-4 nm (diameter) capped with hexanethiol ligand are developed and dispersed in ferroelectric liquid crystal (FLC). The morphology of nanoparticles was characterized using HR-TEM and SEM techniques. Furthermore, a systematic study of energy transfer between the host FLC material (as donors) and metallic-silver nanoparticles (as acceptors) has been explored employing steady state and time resolved fluorescence spectroscopic techniques. The nanoparticle based surface energy transfer (NSET) parameters viz., transfer efficiency, transfer rate, and proximity distance between donor and acceptor, have been determined for NSET couples (FLC material-metallic-silver nanoparticle) composites. It is observed that various NSET parameters and quenching efficiency follow a linear dependence on the concentration of metallic-silver nanoparticles in host FLC material. The nonradiative energy transfer and superquenching effect were analyzed with the help of Stern-Volmer plots. The impact of present study about superquenching effect of the silver nanoparticles can be used for sensing applications that require high degree sensitivity.
RESUMO
In present research, Hevea brasiliensis (Rubber Wood) converted into cellulose by pre-treatment with NaOH (5%) and NaClO2 (5%). In addition, the cellulose was converted to nanocellulose (NC) using ionic liquid, acid hydrolysis and TEMPO oxidation accompanied by ultra-sonication. The prepared nanocellulose characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transformation infrared spectroscopy (FT-IR). Thermal properties have been studied using thermogravimetric and differential thermal Analysis (TGA/DTA). FT-IR results clearly suggested that the synthetic approaches employed did not alter the principle chemical structure of rubber wood cellulose. SEM and AFM monographs reveal that synthetic approaches affect the morphology/surface topology of prepared nanocellulose. Among the three kinds of NC, NC by TEMPO approach had the largest aspect ratio and superior thermal stability.
Assuntos
Celulose/biossíntese , Celulose/química , Hevea/metabolismo , Celulose/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Líquidos Iônicos , Microscopia de Força Atômica , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios XRESUMO
Polyethylene glycol (PEG) surface modified biocompatible InP/ZnS quantum dots (QDs) act as a potential alternative for conventional carcinogenic cadmium-based quantum dots for in vivo and in vitro studies. Comprehensively, we studied the interaction between a model protein bovine serum albumin (BSA) and PEGylated toxic free InP/ZnS QDs using various spectroscopic tools such as absorption, fluorescence quenching, time resolved and synchronous fluorescence spectroscopic measurements. These studies principally show that tryptophan (Trp) residues of BSA have preferable binding affinity towards PEG-InP/ZnS QDs surface and a blue shift in Trp fluorescence emission is a signature of conformational changes in its hydrophobic microenvironment. Photoluminescence (PL) intensity of Trp is quenched by ground state complex formation (static quenching) at room temperature. However, InP/ZnS@BSA conjugates become unstable with increasing temperature and PL intensity of Trp is quenched via dynamic quenching by PEG-InP/ZnS QDs. Experimentally determined thermodynamic parameters for these conjugates have shown spontaneity, entropy driven and exothermic nature of bio-conjugation. The calculated binding affinity (n â 1, Hill coefficient) suggest that the affinity of InP/ZnS QDs for a BSA protein is not dependent on whether or not other BSA proteins are already bound to the QD surface. Energy transfer efficiency (E), Trp residue to InP/ZnS QDs distances and energy transfer rate (kT ) were all obtained from FÖrster resonance energy.
Assuntos
Pontos Quânticos/química , Soroalbumina Bovina/química , Transferência Ressonante de Energia de Fluorescência , Luminescência , Teste de Materiais , Polietilenoglicóis/química , Conformação Proteica , Pontos Quânticos/metabolismo , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta , Sulfetos/química , Temperatura , Termodinâmica , Triptofano/química , Compostos de Zinco/químicaRESUMO
A series of novel unsymmetrically substituted indene-oxadiazole derivatives (3a-f) have been designed and synthesized by employing palladium catalysed Suzuki cross coupling reaction in high yields. The structural integrity of all the novel compounds was established by (1)H, (13)C NMR and LC/MS analysis. These compounds are amorphous in nature and are remarkably stable to long term storage under ambient conditions. The optoelectronic properties have been studied in detail using UV-Vis absorption and Fluorescence spectroscopy. All compounds emit intense blue to green-blue fluoroscence with high quantum yields. Time resolved measurments have shown life times in the range of 1.28 to 4.51 ns. The density functional theory (DFT) calculations were carried out for all the molecules to understand their structure-property relationships. Effect of concentration studies has been carried out in different concentrations for both absorption and emission properties and from this we have identified the optimized fluoroscence concentrations for all these compounds. The indene substituted anthracene-oxadiazole derivative (3f) showed significant red shift (λmax (emi) = 490 nm) and emits intense green-blue fluoroscence with largest stokes shift of 145 nm. This compound also exhibited highest fluoroscence life time (τ) of 4.51 ns, which is very close to the standard dye coumarin-540A (4.63 ns) and better than fluorescein-548 (4.10 ns). The results demonstrated that the novel unsymmetrical indene-substituted oxadiazole derivatives could play important role in organic optoelectronic applications, such as organic light-emitting diodes (OLEDs) or as models for investigating the fluorescent structure-property relationship of the indene-functionalized oxadiazole derivatives.