Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 146(18): 12702-12711, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683963

RESUMO

Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.


Assuntos
alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Doença de Parkinson/metabolismo , Motivos de Aminoácidos
2.
J Biol Chem ; 298(5): 101902, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390347

RESUMO

Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, as well as the accumulation of intraneuronal proteinaceous inclusions known as Lewy bodies and Lewy neurites. The major protein component of Lewy inclusions is the intrinsically disordered protein α-synuclein (α-Syn), which can adopt diverse amyloid structures. Different conformational strains of α-Syn have been proposed to be related to the onset of distinct synucleinopathies; however, how specific amyloid fibrils cause distinctive pathological traits is not clear. Here, we generated three different α-Syn amyloid conformations at different pH and salt concentrations and analyzed the activity of SynuClean-D (SC-D), a small aromatic molecule, on these strains. We show that incubation of α-Syn with SC-D reduced the formation of aggregates and the seeded polymerization of α-Syn in all cases. Moreover, we found that SC-D exhibited a general fibril disaggregation activity. Finally, we demonstrate that treatment with SC-D also reduced strain-specific intracellular accumulation of phosphorylated α-Syn inclusions. Taken together, we conclude that SC-D may be a promising hit compound to inhibit polymorphic α-Syn aggregation.


Assuntos
Fármacos Neuroprotetores/farmacologia , Doença de Parkinson , Piridinas/farmacologia , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Corpos de Lewy/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Polimerização , Agregação Patológica de Proteínas/tratamento farmacológico , Sinucleinopatias/tratamento farmacológico , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
3.
Bioinformatics ; 38(11): 3121-3123, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35445695

RESUMO

SUMMARY: Protein aggregation is associated with many human disorders and constitutes a major bottleneck for producing therapeutic proteins. Our knowledge of the human protein structures repertoire has dramatically increased with the recent development of the AlphaFold (AF) deep-learning method. This structural information can be used to understand better protein aggregation properties and the rational design of protein solubility. This article uses the Aggrescan3D (A3D) tool to compute the structure-based aggregation predictions for the human proteome and make the predictions available in a database form. In the A3D database, we analyze the AF-predicted human protein structures (for over 20.5 thousand unique Uniprot IDs) in terms of their aggregation properties using the A3D tool. Each entry of the A3D database provides a detailed analysis of the structure-based aggregation propensity computed with A3D. The A3D database implements simple but useful graphical tools for visualizing and interpreting protein structure datasets. It also enables testing the influence of user-selected mutations on protein solubility and stability, all integrated into a user-friendly interface. AVAILABILITY AND IMPLEMENTATION: A3D database is freely available at: http://biocomp.chem.uw.edu.pl/A3D2/hproteome. The data underlying this article are available in the article and in its online supplementary material. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Agregados Proteicos , Proteoma , Humanos , Software , Solubilidade , Mutação
4.
Methods Mol Biol ; 2340: 17-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167068

RESUMO

Protein aggregation is a major hurdle in the development and manufacturing of protein-based therapeutics. Development of aggregation-resistant and stable protein variants can be guided by rational redesign using computational tools. Here, we describe the architecture and functionalities of the Aggrescan3D (A3D) standalone package for the rational design of protein solubility and aggregation properties based on three-dimensional protein structures. We present the case studies of the three therapeutic proteins, including antibodies, exploring the practical use of the A3D standalone tool. The case studies demonstrate that protein solubility can be easily improved by the A3D prediction of non-destabilizing amino acid mutations at the protein surfaces.


Assuntos
Agregados Proteicos , Proteínas , Aminoácidos , Proteínas/genética , Solubilidade
5.
Methods Mol Biol ; 2406: 65-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089550

RESUMO

Protein aggregation propensity is a property imprinted in protein sequences and structures, being associated with the onset of human diseases and limiting the implementation of protein-based biotherapies. Computational approaches stand as cost-effective alternatives for reducing protein aggregation and increasing protein solubility. AGGRESCAN 3D (A3D) is a structure-based predictor of aggregation that takes into account the conformational context of a protein, aiming to identify aggregation-prone regions exposed in protein surfaces. Here we inspect the updated 2.0 version of the algorithm, which extends the application of A3D to previously inaccessible proteins and incorporates new modules to assist protein redesign. Among these features, the new server includes stability calculations and the possibility to optimize protein solubility using an experimentally validated computational pipeline. Finally, we employ defined examples to navigate the A3D RESTful service, a routine to handle extensive protein collections. Altogether, this chapter is conceived to train and assist A3D non-experts in the study of aggregation-prone regions and protein solubility redesign.


Assuntos
Agregados Proteicos , Proteínas , Algoritmos , Humanos , Dobramento de Proteína , Proteínas/química , Solubilidade
6.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850135

RESUMO

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , DNA/genética , DNA/metabolismo , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo
7.
Bioorg Chem ; 117: 105472, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775206

RESUMO

The treatment of Parkinson's disease (PD), the second most common neurodegenerative human disorder, continues to be symptomatic. Development of drugs able to stop or at least slowdown PD progression would benefit several million people worldwide. SynuClean-D is a low molecular weight 2-pyridone-based promising drug candidate that inhibits the aggregation of α-synuclein in human cultured cells and prevents degeneration of dopaminergic neurons in a Caenorhabditis elegans model of PD. Improving SynuClean-D pharmacokinetic/pharmacodynamic properties, performing structure/activity studies and testing its efficacy in mammalian models of PD requires the use of gr-amounts of the compound. However, not enough compound is on sale, and no synthetic route has been reported until now, which hampers the molecule progress towards clinical trials. To circumvent those problems, we describe here an efficient and economical route that enables the synthesis of SynuClean-D with good yields as well as the synthesis of SynuClean-D derivatives. Structure-activity comparison of the new compounds with SynuClean-D reveals the functional groups of the molecule that can be disposed of without activity loss and those that are crucial to interfere with α-synuclein aggregation. Several of the derivatives obtained retain the parent's compound excellent in vitro anti-aggregative activity, without compromising its low toxicity. Computational predictions and preliminary testing indicate that the blood brain barrier (BBB) permeability of SynuClean-D is low. Importantly, several of the newly designed and obtained active derivatives are predicted to display good BBB permeability. The synthetic route developed here will facilitate their synthesis for BBB permeability determination and for efficacy testing in mammalian models of PD.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Desenho de Fármacos , Doença de Parkinson/tratamento farmacológico , Piridonas/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Animais , Barreira Hematoencefálica/metabolismo , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Estrutura Molecular , Doença de Parkinson/metabolismo , Agregados Proteicos/efeitos dos fármacos , Piridonas/síntese química , Piridonas/química , Relação Estrutura-Atividade , alfa-Sinucleína/metabolismo
8.
Nat Commun ; 12(1): 3752, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145261

RESUMO

α-Synuclein aggregation is a key driver of neurodegeneration in Parkinson's disease and related syndromes. Accordingly, obtaining a molecule that targets α-synuclein toxic assemblies with high affinity is a long-pursued objective. Here, we exploit the biophysical properties of toxic oligomers and amyloid fibrils to identify a family of α-helical peptides that bind to these α-synuclein species with low nanomolar affinity, without interfering with the monomeric functional protein. This activity is translated into a high anti-aggregation potency and the ability to abrogate oligomer-induced cell damage. Using a structure-guided search we identify a human peptide expressed in the brain and the gastrointestinal tract with analogous binding, anti-aggregation, and detoxifying properties. The chemical entities we describe here may represent a therapeutic avenue for the synucleinopathies and are promising tools to assist diagnosis by discriminating between native and toxic α-synuclein species.


Assuntos
Amiloide/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Trato Gastrointestinal/metabolismo , Humanos
9.
Front Bioeng Biotechnol ; 8: 588947, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178678

RESUMO

Synucleinopathies are a group of disorders characterized by the accumulation of α-Synuclein amyloid inclusions in the brain. Preventing α-Synuclein aggregation is challenging because of the disordered nature of the protein and the stochastic nature of fibrillogenesis, but, at the same time, it is a promising approach for therapeutic intervention in these pathologies. A high-throughput screening initiative allowed us to discover ZPDm, the smallest active molecule in a library of more than 14.000 compounds. Although the ZPDm structure is highly related to that of the previously described ZPD-2 aggregation inhibitor, we show here that their mechanisms of action are entirely different. ZPDm inhibits the aggregation of wild-type, A30P, and H50Q α-Synuclein variants in vitro and interferes with α-Synuclein seeded aggregation in protein misfolding cyclic amplification assays. However, ZPDm distinctive feature is its strong potency to dismantle preformed α-Synuclein amyloid fibrils. Studies in a Caenorhabditis elegans model of Parkinson's Disease, prove that these in vitro properties are translated into a significant reduction in the accumulation of α-Synuclein inclusions in ZPDm treated animals. Together with previous data, the present work illustrates how different chemical groups on top of a common molecular scaffold can result in divergent but complementary anti-amyloid activities.

10.
Comput Struct Biotechnol J ; 18: 1403-1413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637039

RESUMO

Protein aggregation is a widespread phenomenon that stems from the establishment of non-native intermolecular contacts resulting in protein precipitation. Despite its deleterious impact on fitness, protein aggregation is a generic property of polypeptide chains, indissociable from protein structure and function. Protein aggregation is behind the onset of neurodegenerative disorders and one of the serious obstacles in the production of protein-based therapeutics. The development of computational tools opened a new avenue to rationalize this phenomenon, enabling prediction of the aggregation propensity of individual proteins as well as proteome-wide analysis. These studies spotted aggregation as a major force driving protein evolution. Actual algorithms work on both protein sequences and structures, some of them accounting also for conformational fluctuations around the native state and the protein microenvironment. This toolbox allows to delineate conformation-specific routines to assist in the identification of aggregation-prone regions and to guide the optimization of more soluble and stable biotherapeutics. Here we review how the advent of predictive tools has change the way we think and address protein aggregation.

12.
Trends Mol Med ; 26(4): 408-421, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32277934

RESUMO

Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and the accumulation of deposits of α-synuclein (α-syn) in the brain. The pivotal role of α-syn aggregation in PD makes it an attractive target for potential disease-modifying therapies. However, the disordered nature of the protein, its multistep aggregation mechanism, and the lack of structural information on intermediate species complicate the discovery of modulators of α-syn amyloid deposition. Despite these difficulties, small molecules have been shown to block the misfolding and aggregation of α-syn, and can even disentangle mature α-syn amyloid fibrils. In this review we provide an updated overview of these leading small compounds and discuss how these chemical chaperones hold great promise to alter the course of PD progression.


Assuntos
Amiloide/efeitos dos fármacos , Chaperonas Moleculares/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Bibliotecas de Moléculas Pequenas/uso terapêutico , alfa-Sinucleína/antagonistas & inibidores , Humanos
13.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31713636

RESUMO

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Ontologias Biológicas , Curadoria de Dados , Anotação de Sequência Molecular
14.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868591

RESUMO

Previous studies demonstrated importance of C-mannosylation for efficient protein secretion. To study its impact on protein folding and stability, we analyzed both C-mannosylated and non-C-mannosylated thrombospondin type 1 repeats (TSRs) of netrin receptor UNC-5. In absence of C-mannosylation, UNC-5 TSRs could only be obtained at low temperature and a significant proportion displayed incorrect intermolecular disulfide bridging, which was hardly observed when C-mannosylated. Glycosylated TSRs exhibited higher resistance to thermal and reductive denaturation processes, and the presence of C-mannoses promoted the oxidative folding of a reduced and denatured TSR in vitro. Molecular dynamics simulations supported the experimental studies and showed that C-mannoses can be involved in intramolecular hydrogen bonding and limit the flexibility of the TSR tryptophan-arginine ladder. We propose that in the endoplasmic reticulum folding process, C-mannoses orient the underlying tryptophan residues and facilitate the formation of the tryptophan-arginine ladder, thereby influencing the positioning of cysteines and disulfide bridging.


Assuntos
Proteínas de Caenorhabditis elegans/química , Manose/química , Proteínas de Membrana/química , Dobramento de Proteína , Receptores de Superfície Celular/química , Trombospondinas/química , Animais , Arginina/química , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/ultraestrutura , Cisteína/química , Dissulfetos/química , Drosophila melanogaster/química , Drosophila melanogaster/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Glicosilação , Ligação de Hidrogênio , Manose/genética , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/ultraestrutura , Trombospondinas/genética , Triptofano/química , Triptofano/genética
15.
Chemistry ; 25(55): 12820-12829, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411775

RESUMO

An inorganic sandwich molecule, Na[Co(C2 B9 H11 )2 ], able to produce vesicles through self-assembly and known to produce strong dihydrogen-bond interactions with amine groups is capable of interacting with proteins. This dual non-bonding ability of Na[Co(C2 B9 H11 )2 ] is what makes this molecule unique: it can be firmly anchored to a protein surface and is capable of extending over it. To prove this, the widely available bovine serum albumin (BSA), which has many pendant amino groups in its structure, has been taken as the model protein. It has been found that around 100 molecules of Na[Co(C2 B9 H11 )2 ] preserve the native structure of BSA, while endorsing it with a significantly increased stability with respect to chemical- and thermal-induced denaturation due to efficient encapsulation. The advantages of this encapsulation technique are two-fold; the first is its simplicity as it relies on the anchoring capacity of Na[Co(C2 B9 H11 )2 ] to the surface of the protein through the amine-containing residues and the second is its self-assembling capacity allowing it to spread across the surface. The dense shield of protection offered by Na[Co(C2 B9 H11 )2 ] has been demonstrated by the inhibition of BSA pseudo-esterase activity, which indicates that the inorganic corset around BSA protects its reactive surface residues, thereby preventing their acetylation.


Assuntos
Boranos/química , Compostos Organometálicos/química , Soroalbumina Bovina/metabolismo , Animais , Desnaturação Proteica , Soroalbumina Bovina/química
16.
Nucleic Acids Res ; 47(W1): W300-W307, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31049593

RESUMO

Protein aggregation is a hallmark of a growing number of human disorders and constitutes a major bottleneck in the manufacturing of therapeutic proteins. Therefore, there is a strong need of in-silico methods that can anticipate the aggregative properties of protein variants linked to disease and assist the engineering of soluble protein-based drugs. A few years ago, we developed a method for structure-based prediction of aggregation properties that takes into account the dynamic fluctuations of proteins. The method has been made available as the Aggrescan3D (A3D) web server and applied in numerous studies of protein structure-aggregation relationship. Here, we present a major update of the A3D web server to version 2.0. The new features include: extension of dynamic calculations to significantly larger and multimeric proteins, simultaneous prediction of changes in protein solubility and stability upon mutation, rapid screening for functional protein variants with improved solubility, a REST-ful service to incorporate A3D calculations in automatic pipelines, and a new, enhanced web server interface. A3D 2.0 is freely available at: http://biocomp.chem.uw.edu.pl/A3D2/.


Assuntos
Algoritmos , Agregados Proteicos , Proteínas/química , Software , Humanos , Disseminação de Informação , Internet , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica , Estabilidade Proteica , Solubilidade
17.
Redox Biol ; 22: 101135, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30769283

RESUMO

The aggregation of α-synuclein (α-syn) into amyloid fibrils is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The mechanisms underlying the structural transition of soluble and innocuous α-syn to aggregated neurotoxic forms remains largely unknown. The disordered nature of α-syn has hampered the use of structure-based protein engineering approaches to elucidate the molecular determinants of this transition. The recent 3D structure of a pathogenic α-syn fibril provides a template for this kind of studies. The structure supports the NAC domain being a critical element in fibril formation, since it constitutes the core of the fibril, delineating a Greek-key motif. Here, we stapled the ends of this motif with a designed disulfide bond and evaluated its impact on the conformation, aggregation and toxicity of α-syn in different environments. The new covalent link biases the native structural ensemble of α-syn toward compact conformations, reducing the population of fully unfolded species. This conformational bias results in a strongly reduced fibril formation propensity both in the absence and in the presence of lipids and impedes the formation of neurotoxic oligomers. Our study does not support the Greek-key motif being already imprinted in early α-syn assemblies, discarding it as a druggable interface to prevent the initiation of fibrillation. In contrast, it suggests the stabilization of native, compact ensembles as a potential therapeutic strategy to avoid the formation of toxic species and to target the early stages of PD.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Dissulfetos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Mutação , Neurônios/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Solubilidade , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestrutura
18.
Front Mol Neurosci ; 12: 306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920537

RESUMO

α-Synuclein (α-Syn) forms toxic intracellular protein inclusions and transmissible amyloid structures in Parkinson's disease (PD). Preventing α-Syn self-assembly has become one of the most promising approaches in the search for disease-modifying treatments for this neurodegenerative disorder. Here, we describe the capacity of a small molecule (ZPD-2), identified after a high-throughput screening, to inhibit α-Syn aggregation. ZPD-2 inhibits the aggregation of wild-type α-Syn and the A30P and H50Q familial variants in vitro at substoichiometric compound:protein ratios. In addition, the molecule prevents the spreading of α-Syn seeds in protein misfolding cyclic amplification assays. ZPD-2 is active against different α-Syn strains and blocks their seeded polymerization. Treating with ZPD-2 two different PD Caenorhabditis elegans models that express α-Syn either in muscle or in dopaminergic (DA) neurons substantially reduces the number of α-Syn inclusions and decreases synuclein-induced DA neurons degeneration. Overall, ZPD-2 is a hit compound worth to be explored in order to develop lead molecules for therapeutic intervention in PD.

19.
Proc Natl Acad Sci U S A ; 115(41): 10481-10486, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249646

RESUMO

Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of intracellular protein inclusions, known as Lewy bodies and Lewy neurites, which are mainly composed of α-synuclein. Here, we exploited a high-throughput screening methodology to identify a small molecule (SynuClean-D) able to inhibit α-synuclein aggregation. SynuClean-D significantly reduces the in vitro aggregation of wild-type α-synuclein and the familiar A30P and H50Q variants in a substoichiometric molar ratio. This compound prevents fibril propagation in protein-misfolding cyclic amplification assays and decreases the number of α-synuclein inclusions in human neuroglioma cells. Computational analysis suggests that SynuClean-D can bind to cavities in mature α-synuclein fibrils and, indeed, it displays a strong fibril disaggregation activity. The treatment with SynuClean-D of two PD Caenorhabditis elegans models, expressing α-synuclein either in muscle or in dopaminergic neurons, significantly reduces the toxicity exerted by α-synuclein. SynuClean-D-treated worms show decreased α-synuclein aggregation in muscle and a concomitant motility recovery. More importantly, this compound is able to rescue dopaminergic neurons from α-synuclein-induced degeneration. Overall, SynuClean-D appears to be a promising molecule for therapeutic intervention in Parkinson's disease.


Assuntos
Amiloide/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Agregação Patológica de Proteínas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Amiloide/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ensaios de Triagem em Larga Escala , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Células Tumorais Cultivadas , alfa-Sinucleína/metabolismo
20.
Int J Mol Sci ; 19(5)2018 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734798

RESUMO

Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.


Assuntos
Amiloide/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Doenças Neurodegenerativas/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico/química , Humanos , Domínios Proteicos/genética , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais/genética , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA