Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plants (Basel) ; 11(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956448

RESUMO

This study was conducted to assess the survival rates, growth, and chlorophyll fluorescence (Fv/Fm) of four hybrid aspen (14, 191, 27, 291) and two European aspen (R3 and R4) clones cultivated in creosote- and diesel oil-contaminated soil treatments under three different plant densities: one plant per pot (low density), two plants per pot (medium density), and six plants per pot (high density) over a period of two years and three months. Evaluating the survival, growth, and Fv/Fm values of different plants is a prerequisite for phytoremediation to remediate polluted soils for ecological restoration and soil health. The results revealed that contaminated soils affected all plants' survival rates and growth. However, plants grown in the creosote-contaminated soil displayed a 99% survival rate, whereas plants cultivated in the diesel-contaminated soil showed a 22−59% survival rate. Low plant density resulted in a higher survival rate and growth than in the other two density treatments. In contrast, the medium- and high-density treatments did not affect the plant survival rate and growth to a greater extent, particularly in contaminated soil treatments. The effects of clonal variation on the survival rate, growth, and Fv/Fm values were evident in all treatments. The results suggested that hybrid aspen clones 14 and 291, and European aspen clone R3 were suitable candidates for the phytoremediation experiment, as they demonstrated reasonable survival rates, growth, and Fv/Fm values across all treatments. A superior survival rate for clone 291, height and diameter growth, and stem dry biomass production for clone 14 were observed in all soil treatments. Overall, a reasonable survival rate (~75%) and Fv/Fm value (>0.75) for all plants in all treatments, indicating European aspen and hybrid aspen have considerable potential for phytoremediation experiments. As the experiment was set up for a limited period, this study deserves further research to verify the growth potential of different hybrid aspen and European aspen clones in different soil and density treatment for the effective phytoremediation process to remediate the contaminated soil.

2.
New Phytol ; 235(4): 1615-1628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35514157

RESUMO

Many plant species produce multiple leaf flushes during the growing season, which might have major consequences for within-plant variation in chemistry and species interactions. Yet, we lack a theoretical or empirical framework for how differences among leaf flushes might shape variation in damage by insects and diseases. We assessed the impact of leaf flush identity on leaf chemistry, insect attack and pathogen infection on the pedunculate oak Quercus robur by sampling leaves from each leaf flush in 20 populations across seven European countries during an entire growing season. The first leaf flush had higher levels of primary compounds, and lower levels of secondary compounds, than the second flush, whereas plant chemistry was highly variable in the third flush. Insect attack decreased from the first to the third flush, whereas infection by oak powdery mildew was lowest on leaves from the first flush. The relationship between plant chemistry, insect attack and pathogen infection varied strongly among leaf flushes and seasons. Our findings demonstrate the importance of considering differences among leaf flushes for our understanding of within-tree variation in chemistry, insect attack and disease levels, something particularly relevant given the expected increase in the number of leaf flushes with climate change.


Assuntos
Quercus , Árvores , Animais , Insetos , Folhas de Planta/química , Estações do Ano
3.
J Biogeogr ; 49(12): 2269-2280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636040

RESUMO

Aim: Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities. Location: A latitudinal gradient spanning c. 20 degrees in latitude in Europe. Taxa: The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur. Methods: We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding. Results: Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude. Conclusions: Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%-22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.

4.
Am J Bot ; 108(1): 172-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448059

RESUMO

PREMISE: Abiotic factors and plant species traits have been shown to drive latitudinal gradients in herbivory, and yet, population-level factors have been largely overlooked within this context. One such factor is plant density, which may influence the strength of herbivory and may vary with latitude. METHODS: We measured insect herbivory and conspecific plant density (CPD) of oak (Quercus robur) seedlings and saplings along a 17° latitudinal gradient (2700 km) to test whether herbivory exhibited a latitudinal gradient, whether herbivory was associated with CPD, and whether such an association changed with latitude. RESULTS: We found a positive but saturating association between latitude and leaf herbivory. Furthermore, we found no significant relationship between CPD and herbivory, and such lack of density effects remained consistent throughout the sampled latitudinal gradient. CONCLUSIONS: Despite the apparently negligible influence of plant density on herbivory for Q. robur, further research with other plant taxa and in different types of plant communities are needed to investigate density-dependent processes shaping geographical variation in plant-herbivore interactions.


Assuntos
Herbivoria , Quercus , Animais , Insetos , Folhas de Planta , Plântula
5.
Int J Phytoremediation ; 23(7): 704-714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33251852

RESUMO

Wastewater used as irrigation water is causing heavy metal accumulation in the agro-ecosystems. A greenhouse study was conducted to compare the phytoaccumulation ability of four agroforestry tree species under different wastewater treatments. Three-month-old potted seedlings of Morus alba, Acacia nilotica, Acacia ampliceps, and Azadirachta indica were irrigation with tap water (C), municipal wastewater (MWW), and industrial wastewater (IWW). Results showed that MWW had a positive and IWW had a negative impact on biomass production in all the species. Acacia ampliceps showed the highest increment (65%) and showed the lowest decrease (5%) in total biomass under both MWW and IWW treatment. Pb concentration was also found highest in the leaves, stem and roots of Azadirachta indica (108.5, 46.2, 180.5 mg kg-1, respectively) under IWW. Production of H2O2 was highest in IWW treatment with almost 148% increase observed in Azadirachta indica. Similarly, the production of antioxidative enzymes (Superoxide dismutase, Catalase and Peroxidase) was also highest in Azadirachta indica under IWW. Therefore, results suggest that along with high increment in total biomass, both Acacia ampliceps and Azadirachta indica showed high Pb concentration and an effective antioxidative defense mechanism and thus, can be used for planting in soils irrigated with MWW and IWW.


Assuntos
Poluentes do Solo , Águas Residuárias , Antioxidantes , Biodegradação Ambiental , Ecossistema , Peróxido de Hidrogênio , Chumbo , Poluentes do Solo/análise , Árvores
6.
Environ Sci Pollut Res Int ; 27(36): 45555-45567, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803602

RESUMO

Soils polluted by organic or inorganic pollutants are an emerging global environmental issue due to their toxic effects. A phytoremediation experiment was conducted to evaluate the extraction potential of three European aspen clones (R2, R3, and R4) and seven hybrid aspen clones (14, 27, 34, 134, 172, 191, and 291) grown in soils polluted with hydrocarbons (includes polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH)). Height growth, plant survival rates, and .hydrocarbon removal efficiencies were investigated over a 4-year period at a site in Somerharju, Luumaki Finland, to assess the remediation potential of the clones. Hydrocarbon content in the soil was determined by gas chromatography and mass spectrometry. The results revealed that hybrid aspen clones 14 and 34 and European aspen clone R3 achieved greater height growth (171, 171, and 114 cm, respectively) than the other clones in the study. Further, the greatest removals of PAH (90% at depth 10-50 cm) and (86% at depth 5-10 cm) were observed in plot G15 planted with clone R2. Furthermore, the greatest TPH removal rate at 5-10 cm depth (C22-C40, 97%; C10-C40, 96%; and C10-C21, 90%) was observed in plot 117 with clone 134. However, other clones demonstrated an ability to grow in soils with elevated levels of TPH and PAH, which indicates their tolerance to hydrocarbons and their potential capacity for phytoremediation of hydrocarbon-polluted soils. Our study suggests that European aspen and hybrid aspen clones could be used for the remediation of soils polluted with PAH and TPH.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Finlândia , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/análise , Petróleo/análise , Solo , Poluentes do Solo/análise
7.
J Anim Ecol ; 89(3): 829-841, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31769502

RESUMO

Climate change may alter the dynamics of outbreak species by changing the phenological synchrony between herbivores and their host plants. As host plant phenology has a genotypic component that may interact with climate, infestation levels among genotypes might change accordingly. When the outbreaking herbivore is active early in the season, its infestation levels may also leave a detectable imprint on herbivores colonizing the plant later in the season. In this study, we first investigated how the spring phenology and genotype of Quercus robur influenced the density of the spring-active, outbreaking leaf miner Acrocercops brongniardellus. We then assessed how intraspecific density affected the performance of A. brongniardellus and how oak genotype and density of A. brongniardellus affected the insect herbivore community. We found that Q. robur individuals of late spring phenology were more strongly infested by A. brongniardellus. Conspecific pupae on heavily infested oaks tended to be lighter, and fewer heterospecific insect herbivores colonized the oak later in the season. Beyond its effects through phenology, plant genotype left an imprint on herbivore species richness and on two insect herbivores. Our results suggest a chain of knock-on effects from plant phenology, through the outbreaking species to the insect herbivore community. Given the finding of how phenological synchrony between the outbreak species and its host plant influences infestation levels, a shift in synchrony may then change outbreak dynamics and cause cascading effects on the insect community.


Assuntos
Mariposas , Quercus , Animais , Surtos de Doenças , Herbivoria , Insetos
8.
Ann Bot ; 125(6): 881-890, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31858135

RESUMO

BACKGROUND AND AIMS: Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits. METHODS: Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20° latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation. KEY RESULTS: We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation. CONCLUSIONS: These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure.


Assuntos
Quercus , Animais , Herbivoria , Fenótipo , Folhas de Planta , Sementes
9.
Int J Phytoremediation ; 21(13): 1329-1340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31274011

RESUMO

In a greenhouse experiment, plant growth and copper (Cu) and zinc (Zn) uptake by four Salix cultivars grown in Cu and Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The cultivars displayed tolerance to heavily contaminated soils throughout the experiment. After uptake, total mean Cu concentrations in the leaves, shoots and roots in all cultivars and treatments ranged from 163 to 474 mg kg-1 and mean Zn concentrations ranged from 776 to 1823 mg kg-1. Lime and wood ash addition increased dry biomass growth (25-43%), chlorophyll fluorescence (Fv/Fm) values (3-6%), the translocation factor (TF) (15-60% for Cu; 10-25% for Zn), the bio-concentration factor (BCF) (40-85% for Cu; 70-120% for Zn), and metal uptake (55-70% for Cu; 50-65% for Zn) compared to unamended treatment across all cultivars. The results revealed that Salix cultivars have the potential to take up and accumulate significant amounts of Cu and Zn. Cultivar Klara (Salix viminalis × S. schwerinii × S. dasyclados) was found to be the most effective cultivar for phytoextraction since it displayed greater dry biomass production, Fv/Fm, TF, BCF values and uptake percentage rates of Cu and Zn compared to the other three cultivars. This study indicates that further research is needed to clarify the wider phytoextraction capabilities of different Salix cultivars.


Assuntos
Metais Pesados , Salix , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Compostos de Cálcio , Óxidos , Raízes de Plantas , Solo
10.
Ecotoxicol Environ Saf ; 171: 753-770, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30660969

RESUMO

This study was conducted to evaluate the effects of lime and bisphosphonates (BPs) such as N10O chelate amendment on the growth, physiological and biochemical parameters, and phytoextraction potential of the willow variety Klara (Salix viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu), nickel (Ni) and zinc (Zn). The plants were irrigated with tap or processed water (mine wastewater). The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameters, gas exchange parameters and chlorophyll fluorescence (Fv/Fm) values. In contrast, malondialdehyde (MDA) content, organic acids, total phenolic and total flavonoid contents, and the accumulation of metals/metalloids in the plant tissues were increased compared to the control. When the soil was supplemented with lime and N10O; growth, physiological, biochemical parameters, and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime‒ and N10O‒amended soil treatment produced higher growth rates, resistance capacity, photosynthesis rates and phytoextraction efficiency levels relative to either the lime‒amended or the N10O‒amended soil treatments. This study provides practical evidence of the efficient chelate‒assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in situ remediation of Cu‒, Ni‒ and Zn‒contaminated soils and mine wastewaters.


Assuntos
Compostos de Cálcio/farmacologia , Difosfonatos/farmacologia , Óxidos/farmacologia , Salix/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Resíduos Industriais , Metais Pesados/metabolismo , Mineração , Salix/crescimento & desenvolvimento , Salix/metabolismo , Poluentes do Solo/metabolismo , Águas Residuárias , Poluentes Químicos da Água/metabolismo
11.
Sci Rep ; 7(1): 13501, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044133

RESUMO

Norway spruce is one of the most important commercial forestry species in Europe, and is commonly infected by the bark beetle-vectored necrotrophic fungus, Endoconidiophora polonica. Spruce trees display a restricted capacity to respond to environmental perturbations, and we hypothesized that water limitation will increase disease severity in this pathosystem. To test this prediction, 737 seedlings were randomized to high (W+) or low (W-) water availability treatment groups, and experimentally inoculated with one of three E. polonica strains or mock-inoculated. Seedling mortality was monitored throughout an annual growing season, and total seedling growth and lesion length indices were measured at the experiment conclusion. Seedling growth was greater in the W+ than W- treatment group, demonstrating limitation due to water availability. For seedlings infected with two of the fungal strains, no differences in disease severity occurred in response to water availability. For the third fungal strain, however, greater disease severity (mortality and lesion lengths) occurred in W- than W+ seedlings. While the co-circulation in nature of multiple E. polonica strains of varying virulence is known, this is the first experimental evidence that water availability can alter strain-specific disease severity.


Assuntos
Florestas , Fungos/patogenicidade , Picea/fisiologia , Imunidade Vegetal , Ciclo Hidrológico , Germinação , Picea/imunologia , Picea/microbiologia , Sementes/metabolismo , Sementes/fisiologia
12.
Ecology ; 98(10): 2574-2584, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28718884

RESUMO

Dispersal, environment and genetic variation may all play a role in shaping host-parasite dynamics. Yet, in natural systems, their relative importance remains unresolved. Here, we do so for the epidemiology of a specialist parasite (Erysiphe alphitoides) on the pedunculate oak (Quercus robur). For this purpose, we combine evidence from a multi-year field survey and two dispersal experiments, all conducted at the landscape scale. Patterns detected in the field survey suggest that the parasite is structured as a metapopulation, with trees in denser oak stands characterized by higher parasite occupancy, higher colonization rates and lower extinction rates. The dispersal experiments revealed a major impact of the environment and of host genotype on the presence and abundance of the parasite, with a weaker but detectable imprint of dispersal limitation. Overall, our findings emphasize that dispersal, host genotype and the environment jointly shape the spatial dynamics of a parasite in the wild.


Assuntos
Ascomicetos/fisiologia , Genótipo , Quercus/microbiologia , Animais , Parasitos , Quercus/parasitologia , Árvores
13.
Front Plant Sci ; 8: 883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603538

RESUMO

Climate changes, exemplified by increased temperatures and CO2 concentration, pose a global threat to forest health. Of particular concern are pests and pathogens, with a warming climate altering their distributions and evolutionary capacity, while impairing the ability of some plants to respond to infections. Progress in understanding and mitigating such effects is currently hindered by a lack of empirical research. Norway spruce (Picea abies) is one of the most economically important tree species in northern Europe, and is considered highly vulnerable to changes in climate. It is commonly infected by the fungus Endoconidiophora polonica, and we hypothesized that damage caused to trees will increase under future climate change predictions. To test this hypothesis an in vivo greenhouse experiment was conducted to evaluate the effects of a changed growing environment on E. polonica infected Norway spruce seedlings, comparing ambient conditions to predicted temperatures and CO2 levels in Finland for the years 2030 and 2100. In total, 450 seedlings were randomized amongst the three treatments, with 25 seedlings from each allocated to inoculation with one of five different fungal strains or mock-inoculation. Seedlings were monitored throughout the thermal growing season for mortality, and lesion length and depth indices were measured at the experiment conclusion. Disease severity (mortality and lesions) was consistently greater in fungal-inoculated than mock-inoculated seedlings. However, substantial differences were observed among fungal strains in response to climate scenarios. For example, although overall seedling mortality was highest under the most distant (and severe) climate change expectations, of the two fungal strains with the highest mortality counts (referred to as F4 and F5), one produced greater mortality under the 2030 and 2100 scenarios than ambient conditions, whereas climate scenario had no effect on the other. This study contributes to a limited body of empirical research on the effects of projected climate changes on forestry pathosystems, and is the first to investigate interactions between Norway spruce and E. polonica. The results indicate the potential for future climate changes to alter the impact of forest pathogens with implications for productivity, while highlighting the need for a strain-specific level of understanding of the disease agents.

14.
J Environ Manage ; 183(Pt 3): 467-477, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614557

RESUMO

Salix schwerinii was tested in a pot experiment to assess plant growth performance i.e., relative height and dry biomass and the potential for heavy metal uptake in soils polluted with chromium, zinc, copper, nickel and total petroleum hydrocarbons. The soil used in the pot experiment was collected from a landfill area in Finland. Peat soil was added at different quantities to the polluted soil to stimulate plant growth. The plants were irrigated with tap water or processed water (municipal waste water) to further investigate the effects of nutrient loading on plant biomass growth. The soil was treated at two pH levels (4 and 6). The results showed that the addition of 40-70% peat soil at pH 6 to a polluted soil, and irrigation with processed water accelerated plant growth and phytoextraction efficiency. In the pot experiment, Salix grown in chromium, zinc, copper, nickel and total petroleum hydrocarbons -contaminated field soil for 141 days were unaffected by the contaminated soil and took up excess nutrients from the soil and water. Total mean chromium concentration in the plant organs ranged from 17.05 to 250.45 mg kg-1, mean zinc concentration ranged from 142.32 to 1616.59 mg kg-1, mean copper concentration ranged from 12.11 to 223.74 mg kg-1 and mean nickel concentration ranged from 10.11 to 75.90 mg kg-1. Mean chromium concentration in the plant organs ranged from 46 to 94%, mean zinc concentration ranged from 44 to 76%, mean copper concentration ranged from 19 to 54% and mean nickel concentration ranged from 8 to 21% across all treatments. Under the different treatments, chromium was taken up by Salix in the largest quantities, followed by zinc, copper and nickel respectively. Salix also produced a moderate reduction in total petroleum total petroleum hydrocarbons in the polluted soil. The results from the pot experiment suggest that Salix schwerinii has the potential to accumulate significant amounts of chromium, zinc, copper and nickel. However, long term research is needed to verify the phytoextraction abilities of Salix observed in the pot experiment.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Metais Pesados/farmacocinética , Salix/crescimento & desenvolvimento , Poluentes do Solo/farmacocinética , Irrigação Agrícola/métodos , Biomassa , Poluição Ambiental , Finlândia , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Metais Pesados/toxicidade , Petróleo , Poluição por Petróleo , Salix/efeitos dos fármacos , Salix/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Distribuição Tecidual , Instalações de Eliminação de Resíduos , Águas Residuárias
15.
Mol Ecol ; 24(3): 628-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25545194

RESUMO

Poplars have widely been used for rhizoremediation of a broad range of organic contaminants for the past two decades. Still, there is a knowledge gap regarding the rhizosphere-associated bacterial communities of poplars and their dynamics during the remediation process. It is envisaged that a detailed understanding of rhizosphere-associated microbial populations will greatly contribute to a better design and implementation of rhizoremediation. To investigate the long-term succession of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar, we carried out a 2-year field study. Hybrid aspen (Populus tremula × Populus tremuloides) seedlings were planted in polluted soil excavated from an accidental oil-spill site. Vegetated and un-vegetated soil samples were collected for microbial community analyses at seven different time points during the course of 2 years and sampling time points were chosen to cover the seasonal variation in the boreal climate zone. Bacterial community structure was accessed by means of 16S rRNA gene amplicon pyrosequencing, whereas catabolic diversity was monitored by pyrosequencing of alkane hydroxylase and extradiol dioxygenase genes. We observed a clear succession of bacterial communities on both structural and functional levels from early to late-phase communities. Sphingomonas type extradiol dioxygenases and alkane hydroxylase homologs of Rhodococcus clearly dominated the early-phase communities. The high-dominance/low-diversity functional gene communities underwent a transition to low-dominance/high-diversity communities in the late phase. These results pointed towards increased catabolic capacities and a change from specialist to generalist strategy of bacterial communities during the course of secondary succession.


Assuntos
Bactérias/classificação , Biodiversidade , Poluição por Petróleo , Populus , Microbiologia do Solo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , DNA Bacteriano/genética , Consórcios Microbianos , Oxigenases/genética , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA
16.
ISME J ; 8(10): 2131-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25105905

RESUMO

Restoration of polluted sites via in situ bioremediation relies heavily on the indigenous microbes and their activities. Spatial heterogeneity of microbial populations, contaminants and soil chemical parameters on such sites is a major hurdle in optimizing and implementing an appropriate bioremediation regime. We performed a grid-based sampling of an aged creosote-contaminated site followed by geostatistical modelling to illustrate the spatial patterns of microbial diversity and activity and to relate these patterns to the distribution of pollutants. Spatial distribution of bacterial groups unveiled patterns of niche differentiation regulated by patchy distribution of pollutants and an east-to-west pH gradient at the studied site. Proteobacteria clearly dominated in the hot spots of creosote pollution, whereas the abundance of Actinobacteria, TM7 and Planctomycetes was considerably reduced from the hot spots. The pH preferences of proteobacterial groups dominating in pollution could be recognized by examining the order and family-level responses. Acidobacterial classes came across as generalists in hydrocarbon pollution whose spatial distribution seemed to be regulated solely by the pH gradient. Although the community evenness decreased in the heavily polluted zones, basal respiration and fluorescein diacetate hydrolysis rates were higher, indicating the adaptation of specific indigenous microbial populations to hydrocarbon pollution. Combining the information from the kriged maps of microbial and soil chemistry data provided a comprehensive understanding of the long-term impacts of creosote pollution on the subsurface microbial communities. This study also highlighted the prospect of interpreting taxa-specific spatial patterns and applying them as indicators or proxies for monitoring polluted sites.


Assuntos
Bactérias/classificação , Biodiversidade , Creosoto , Microbiologia do Solo , Poluentes do Solo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Estatísticos , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Solo/química
17.
Front Plant Sci ; 5: 264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982664

RESUMO

We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

18.
Environ Pollut ; 159(7): 1823-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21501910

RESUMO

Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula × P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30 m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15m from the motorway. Although no significant distance × clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling.


Assuntos
Quimera/crescimento & desenvolvimento , Ecossistema , Populus/crescimento & desenvolvimento , Quimera/genética , Hibridização Genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Populus/química , Populus/genética
19.
Ecology ; 91(9): 2660-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20957960

RESUMO

Recent work has shown a potential role for both host plant genotype and spatial context in structuring insect communities. In this study, we use three separate data sets on herbivorous insects on oak (Quercus robur) to estimate the relative effects of host plant genotype (G), location (E), and the G x E interaction on herbivore community structure: a common garden experiment replicated at the landscape scale (approximately 5 km2); two common gardens separated at the regional scale (approximately 10 000 km2); and survey data on wild trees in various spatial settings. Our experiments and survey reveal that, at the landscape scale, the insect community is strongly affected by the spatial setting, with 32% of the variation in species richness explained by spatial connectivity. In contrast, G and G x E play minor roles in structuring the insect community. Results remained similar when extending the spatial scale of the study from the more local (landscape) level to the regional level. We conclude that in our study system, spatial processes play a major role in structuring these insect communities at both the landscape and regional scales, whereas host plant genotype seems of secondary importance.


Assuntos
Genótipo , Insetos/fisiologia , Quercus/genética , Animais , Demografia , Ecossistema , Comportamento Alimentar
20.
J Chem Ecol ; 30(9): 1693-711, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15586669

RESUMO

Oaks have been one of the classic model systems in elucidating the role of polyphenols in plant-herbivore interactions. This study provides a comprehensive description of seasonal variation in the phenolic content of the English oak (Quercus robur). Seven different trees were followed over the full course of the growing season, and their foliage repeatedly sampled for gallic acid, 9 individual hydrolyzable tannins, and 14 flavonoid glycosides, as well as for total phenolics, total proanthocyanidins, carbon, and nitrogen. A rare dimeric ellagitannin, cocciferin D2, was detected for the first time in leaves of Q. robur, and relationships between the chemical structures of individual tannins were used to propose a biosynthetic pathway for its formation. Overall, hydrolyzable tannins were the dominant phenolic group in leaves of all ages. Nevertheless, young oak leaves were much richer in hydrolyzable tannins and flavonoid glycosides than old leaves, whereas the opposite pattern was observed for proanthocyanidins. However, when quantified as individual compounds, hydrolyzable tannins and flavonoid glycosides showed highly variable seasonal patterns. This large variation in temporal trends among compounds, and a generally weak correlation between the concentration of any individual compound and the total concentration of phenolics, as quantified by the Folin-Ciocalteau method, leads us to caution against the uncritical use of summary quantifications of composite phenolic fractions in ecological studies.


Assuntos
Flavonoides/metabolismo , Glicosídeos/metabolismo , Taninos Hidrolisáveis/metabolismo , Folhas de Planta/química , Proantocianidinas/metabolismo , Quercus/química , Carbono/análise , Carbono/metabolismo , Flavonoides/análise , Flavonoides/química , Glicosídeos/análise , Glicosídeos/química , Taninos Hidrolisáveis/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Fenóis/análise , Fenóis/química , Fenóis/metabolismo , Proantocianidinas/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA