Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 197(3): 699-713, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34713303

RESUMO

Studies comparing the relative strengths of multiple key drivers of forest dynamics are rare, but can inform both our fundamental understanding of plant communities as well as community-ecology theory. We studied the dynamics of a woody plant community in a southern Indian seasonally-dry tropical forest (SDTF) in relation to environmental factors (precipitation, temperature, fire, soil nutrients, and topography) and conspecific and heterospecific plant neighborhoods to identify which of these best predicted recruitment, survival and growth of dominant species over a 24-year study period. We also assessed the relative prevalence of density-independent and density-dependent responses in the community. Climate and fire were more important than plant neighborhoods and topographic and edaphic variables in explaining variation in plant performance. Recruitment, survival and growth were lower during periods of low precipitation and immediately following fires. Recruitment increased, and growth and survival largely decreased, with increasing temperatures. Smaller-sized individuals were disproportionately strongly affected by the vagaries of climate and fire. Conspecific negative density-dependence, a population-fluctuation stabilizing process, was relatively unimportant. Density-dependent effects decayed rapidly with distance from the focal plant (growth, survival) or quadrat (recruitment); positive density-dependence was frequently found in recruitment, possibly resulting from limited dispersal and/or facilitation. Woody plant dynamics in this SDTF appear to be responding largely to fluctuations in environmental conditions, particularly precipitation, temperature, and fire. In contrast to wetter forests, population-fluctuation stabilizing processes in this ecosystem appear to be relatively weak. Changes in climatic or fire regimes are likely to result in large compositional shifts in this SDTF.


Assuntos
Ecossistema , Incêndios , Florestas , Humanos , Solo , Árvores , Clima Tropical
2.
PLoS Comput Biol ; 17(4): e1008853, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914731

RESUMO

When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.


Assuntos
Evolução Biológica , Florestas , Árvores , Análise por Conglomerados , Fenômenos Ecológicos e Ambientais , Modelos Biológicos , Filogenia
3.
Ecology ; 98(5): 1334-1348, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247414

RESUMO

The extent to which interspecific niche differences structure plant communities is highly debated, with extreme viewpoints ranging from fine-scaled niche partitioning, where every species in the community is specialized to a distinct niche, to neutrality, where species have no niche or fitness differences. However, there exists a default position wherein niches of species in a community are determined by their evolutionary and biogeographic histories, irrespective of other species within the community. According to this viewpoint, a broad range of pair-wise niche overlaps-from completely overlapping to completely distinct-are expected in any community without the need to invoke interspecific interactions. We develop a method that can test for both habitat associations and niche differences along an arbitrary number of spatial and temporal niche dimensions and apply it to a 24-yr data set of the eight dominant woody-plant species (representing 84% and 76% of total community abundance and basal area, respectively) from a 50-ha permanent plot in a southern Indian tropical dry forest, using edaphic, topographic, and precipitation variables as niche axes. Species separated into two broad groups in niche space-one consisting of three canopy species and the other of a canopy species and four understory species-along axes that corresponded mainly to variation in soil P, Al and a topographic index of wetness. Species within groups tended to have significantly greater niche overlap than expected by chance. Community-wide niche overlap in spatial and temporal niche axes was never smaller than expected by chance. Species-habitat associations were neither necessary nor sufficient preconditions for niche differences to be present. Our results suggest that this tropical dry-forest community consists of several tree species with broadly overlapping niches, and where significant niche differences do exist, they are not readily interpretable as evidence for niche differentiation. We argue, based on a survey of the literature, that many of the observed niche differences in tropical forests are more parsimoniously viewed as autecological differences between species that exist independently of interspecific interactions.


Assuntos
Florestas , Árvores/fisiologia , Ecossistema , Solo , Clima Tropical
4.
PLoS One ; 11(4): e0153212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100088

RESUMO

We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.


Assuntos
Florestas , Solo/química , Incêndios , Índia , Metais/análise , Nitratos/análise , Nitrogênio/análise , Clima Tropical
5.
Ecol Lett ; 17(7): 855-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24805976

RESUMO

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.


Assuntos
Modelos Biológicos , Árvores/fisiologia , Meio Ambiente , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA