Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687805

RESUMO

Volatile organic compounds (VOCs) have recently received considerable attention for the analysis and monitoring of different biochemical processes in biological systems such as humans, plants, and microorganisms. The advantage of using VOCs to gather information about a specific process is that they can be extracted using different types of samples, even at low concentrations. Therefore, VOC levels represent the fingerprints of specific biochemical processes. The aim of this work was to develop a sensor based on a photoionization detector (PID) and a zeolite layer, used as an alternative analytic separation technique for the analysis of VOCs. The identification of VOCs occurred through the evaluation of the emissive profile during the thermal desorption phase, using a stainless-steel chamber for analysis. Emission profiles were evaluated using a double exponential mathematical model, which fit well if compared with the physical system, describing both the evaporation and diffusion processes. The results showed that the zeolite layer was selective for propionic acid molecules if compared to succinic acid molecules, showing linear behavior even at low concentrations. The process to define the optimal adsorption time between the propionic acid molecules was performed in the range of 5 to 60 min, followed by a thermal desorption process at 100 °C. An investigation of the relationship between the evaporation and diffusion rates showed that the maximum concentration of detected propionic acid molecules occurred in 15 min. Other analyses were performed to study how the concentration of VOCs depended on the desorption temperature and the volume of the analysis chamber. For this purpose, tests were performed using three analysis chambers with volumes of 25 × 10-6, 50 × 10-6, and 150 × 10-6 m3 at three different desorption temperatures of 20 °C, 50 °C, and 100 °C, respectively. The results demonstrated that the evaporation rate of the VOCs increased rapidly with an increasing temperature, while the diffusion rate remained almost constant and was characterized by a slow decay time. The diffusion ratio increased when using a chamber with a larger volume. These results highlight the capabilities of this alternative technique for VOC analysis, even for samples with low concentrations. The coupling of a zeolite layer and a PID improves the detection selectivity in portable devices, demonstrating the feasibility of extending its use to a wide range of new applications.

2.
Diagnostics (Basel) ; 13(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37510186

RESUMO

Background and aim-Alterations in circulating microRNA (miRNA) expression patterns are thought to be involved in the early stages of prediabetes, as well as in the progression to overt type 2 diabetes mellitus (T2D) and its vascular complications. However, most research findings are conflicting, in part due to differences in miRNA extraction and normalization methods, and in part due to differences in the study populations and their selection. This cross-sectional study seeks to find new potentially useful biomarkers to predict and/or diagnose T2D by investigating the differential expression patterns of circulating miRNAs in the serum of patients with impaired fasting glucose (IFG) and new-onset T2D, with respect to euglycemic controls, using a high-throughput 384-well array and real-time PCR. Methods-Thirty subjects, aged 45-65 years, classified into three matched groups (of 10 participants each) according to their glycometabolic status, namely (1) healthy euglycemic controls, (2) patients with IFG and (3) patients with new-onset, uncomplicated T2D (<2 years since diagnosis) were enrolled. Circulating miRNAs were extracted from blood serum and profiled through real-time PCR on a commercial 384 well-array, containing spotted forward primers for 372 miRNAs. Data analysis was performed by using the online data analysis software GeneGlobe and normalized by the global Ct mean method. Results-Of the 372 analyzed miRNAs, 33 showed a considerably different expression in IFG and new-onset T2D compared to healthy euglycemic controls, with 2 of them down-regulated and 31 up-regulated. Stringent analysis conditions, using a differential fold regulation threshold ≥ 10, revealed that nine miRNAs (hsa-miR-3610, hsa-miR-3200-5p, hsa-miR-4651, hsa-miR-3135b, hsa-miR-1281, hsa-miR-4301, hsa-miR-195-5p, hsa-miR-523-5p and hsa-let-7a-5p) showed a specific increase in new-onset T2D patients compared to IFG patients, suggesting their possible role as early biomarkers of progression from prediabetes to T2D. Moreover, by conventional fold regulation thresholds of ±2, hsa-miR-146a-5p was down-regulated and miR-1225-3p up-regulated in new-onset T2D patients only. Whereas hsa-miR-146a-5p has a well-known role in glucose metabolism, insulin resistance and T2D complications, no association between hsa-miR-1225-3p and T2D has been previously reported. Bioinformatic and computational analysis predict a role of hsa-miR-1225-3p in the pathogenesis of T2D through the interaction with MAP3K1 and HMGA1. Conclusions-The outcomes of this study could aid in the identification and characterization of circulating miRNAs as potential novel biomarkers for the early diagnosis of T2D and may serve as a proof-of-concept for future mechanistic investigations.

3.
Bioengineering (Basel) ; 9(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36004929

RESUMO

Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470-610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33956630

RESUMO

Polyvinylidene fluoride (PVDF), a material with ferroelectric characteristics, is still extremely topical for the manufacturing of transducers, and different examples, some of which have been actively commercialized since the 1980s, are reported in the literature. In this work, we present a review focused on the PVDF technology for the manufacturing of in-air ultrasonic transducers, which found application in medical robotics, sonar systems, and automation industry (e.g., proximity sensors and obstacle detection). The aim is to provide a comprehensive view on the development of such ultrasonic transducers, highlighting the constructive choices and the advantages/disadvantages in a thorough and concise way.

5.
Micromachines (Basel) ; 12(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498360

RESUMO

Exploiting the transmission and reception of low frequency ultrasounds in air is often associated with the innate echolocating abilities of some mammals, later emulated with sophisticated electronic systems, to obtain information about unstructured environments. Here, we present a novel approach for the reception of ultrasounds in air, which exploits a piezopolymer broadband sensor and an electronic interface based on a second-generation voltage conveyor (VCII). Taking advantage of its capability to manipulate both voltage and current signals, in this paper, we propose an extremely simple interface that presents a sensitivity level of about -100 dB, which is in line with commercially available references. The presented results are obtained without any filtration stage. The second-generation voltage conveyor active device is implemented through a commercially available AD844, with a supply voltage of ±15 V.

6.
Micromachines (Basel) ; 12(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401402

RESUMO

Polyvinylidene fluoride and its copolymers are a well-known family of low-cost ferroelectric materials widely used for the fabrication of devices for a wide range of applications. A biocompatibility, high optical quality, chemical and mechanical durability of poly(vinylidene fluoride-trifluoroethylene), (P(VDF-TrFE)), makes it particularly attractive for designing of effective coating layers for different diagnostic techniques. In the present work, the nonlinear optical characterization of P(VDF-TrFE)-coating films deposited onto a glass substrate was done. Advantages of the coating application for cells/substrates in the field of multiphoton imaging the efficiency of such coating layer for long-duration characterization of so-called harmonic nanoparticles (HNPs) were shown. The influence of glass surface protection by P(VDF-TrFE) film from an effect of HNPs sticking to the walls of the flow-cell was analyzed for effective studying of the optical harmonics generation efficiency of HNPs making the analysis more robust.

7.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899869

RESUMO

Low frequency ultrasounds in air are widely used for real-time applications in short-range communication systems and environmental monitoring, in both structured and unstructured environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated for TOF estimations. The procedure, based on the use of template signals, was implemented to improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers. The experimental results were then compared with the standard threshold and cross-correlation techniques for method validation and characterization. An average improvement of 30% and 19%, in terms of standard error (SE), was observed. Moreover, the experimental results evidenced an enhancement in repeatability of about 10% in the use of a recursive positioning system.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32849308

RESUMO

Objective: Recently, the role of circulating miRNAs as non-invasive biomarkers for the identification and monitoring of diabetes microvascular complications has emerged. Herein, we aimed to: identify circulating miRNAs differentially expressed in patients with and without diabetic retinopathy (DR); examine their predictive value; and understand their pathogenic impact. Methods: Pooled serum samples from randomly selected matched patients with type 2 diabetes, either with or without DR, were used for initial serum miRNA profiling. Validation of the most relevant miRNAs was thereafter conducted by RT-qPCR in an extended sample of patients with DR and matched controls. Results: Following miRNA profiling, 43 miRNAs were significantly up- or down-regulated in patients with DR compared with controls. After individual validation, 5 miRNAs were found significantly overexpressed in patients with DR. One of them, miR-1281, was the most up-regulated and appeared to be specifically related to DR. Furthermore, secreted levels of miR-1281 were increased in high glucose-cultured retinal cells, and there was evidence of a potential link between glucose-induced miR-1281 up-regulation and DR. Conclusion: Our findings suggest miR-1281 as a circulating biomarker of DR. Also, they highlight the pathogenic significance of miR-1281, providing insights for a new potential target in treating DR.


Assuntos
Biomarcadores/sangue , MicroRNA Circulante/genética , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/diagnóstico , Regulação da Expressão Gênica , MicroRNAs/genética , Idoso , Estudos de Casos e Controles , Movimento Celular , Retinopatia Diabética/sangue , Retinopatia Diabética/etiologia , Feminino , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
9.
Artigo em Inglês | MEDLINE | ID: mdl-31906326

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by a prothrombotic state, predisposing to vascular complications. Some related markers, linking thrombophilia to hemostasis and inflammation, however, have been poorly explored in relation to patients' glycemia. We therefore investigated the association of laboratory hemostatic parameters, circulating adhesion molecules (ADMs), white blood cell (WBC) count, and neutrophil/lymphocyte ratio (NLR) with T2DM and glycemic control. RESEARCH DESIGN: In this study, 82 subjects, grouped into T2DM patients (n = 41) and healthy individuals (n = 41) were enrolled. To evaluate glycemic control, the T2DM cohort was expanded to 133 patients and sub-classified according to glycated hemoglobin (HbA1c) <7% and ≥ 7% (n = 58 and n = 75, respectively). We assessed glycemia, HbA1c, prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen, plasminogen activator inhibitor-1 (PAI-1), platelet and leukocyte parameters, vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and selectins (E-, P-, L-). RESULTS: PT % activity, PAI-1, VCAM-1, WBC, and neutrophil counts were significantly higher in T2DM patients than in healthy subjects. Poor glycemic control (HbA1c ≥ 7%) was correlated with increased PT activity (p = 0.015), and higher levels of E-selectin (p = 0.009), P-selectin (p = 0.012), and NLR (p = 0.019). CONCLUSIONS: Both T2DM and poor glycemic control affect some parameters of hemostasis, inflammation, and adhesion molecules. Further studies are needed to establish their clinical utility as adjuvant markers for cardio-vascular risk in T2DM patients.


Assuntos
Moléculas de Adesão Celular , Diabetes Mellitus Tipo 2 , Hemostasia , Inflamação , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Doenças Cardiovasculares/sangue , Moléculas de Adesão Celular/fisiologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Selectina E , Feminino , Hemoglobinas Glicadas/análise , Índice Glicêmico , Humanos , Inflamação/sangue , Molécula 1 de Adesão Intercelular , Masculino , Pessoa de Meia-Idade , Selectina-P , Inibidor 1 de Ativador de Plasminogênio , Molécula 1 de Adesão de Célula Vascular
10.
Micromachines (Basel) ; 11(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979030

RESUMO

A long-standing goal of nanoelectronics is the development of integrated systems to be used in medicine as sensor, therapeutic, or theranostic devices. In this review, we examine the phenomena of transport and the interaction between electro-active charges and the material at the nanoscale. We then demonstrate how these mechanisms can be exploited to design and fabricate devices for applications in biomedicine and bioengineering. Specifically, we present and discuss electrochemical devices based on the interaction between ions and conductive polymers, such as organic electrochemical transistors (OFETs), electrolyte gated field-effect transistors (FETs), fin field-effect transistor (FinFETs), tunnelling field-effect transistors (TFETs), electrochemical lab-on-chips (LOCs). For these systems, we comment on their use in medicine.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31647427

RESUMO

Up to now, low-frequency ultrasonic transducers have been manufactured using different materials and technologies and have been inspired by the biological world, mainly by the biosonar of dolphins and bats. Our research moves in this context, which is dedicated to investigating the feasibility of developing a piezopolymer sensor capable of covering the wide frequency range of a bat's biosonar. We propose an ultrasonic sensor manufactured using a sheet of polyvinylidene fluoride curved according to a logarithmic spiral geometry as it is present in biological models of the cochlea. Experiments were carried out both in transmission and reception, and demonstrated that a spiral-shaped transducer can transmit and receive ultrasonic signals similar to the specific vocalizations of most of the bats in the range between 20 and 80 kHz. The resonant frequencies of the transducer were evaluated through a finite element analysis, in agreement with experimental data covering the entire broadband. During transmission, the sound pressure level showed a maximum value of 90 dB, while during reception, the sensitivity spanned from t103.8 up to t89.1 dB. Directivity measurements demonstrated omnidirectional properties both on horizontal and vertical planes, representing a breakthrough in the field of broadband ultrasonic sensors.


Assuntos
Cóclea , Modelos Biológicos , Transdutores , Ultrassom/instrumentação , Animais , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Cóclea/anatomia & histologia , Cóclea/fisiologia , Ecolocação/fisiologia , Desenho de Equipamento , Análise de Elementos Finitos , Polivinil/química
12.
Nanomaterials (Basel) ; 9(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752315

RESUMO

A straightforward and effective spin-coating technique at 120 °C was investigated for the deposition of a thin nanoporous layer with antireflection properties onto glass and indium tin oxide (ITO) coated glass. A mixture of zeolite 3A powder and high iodine value vegetable oil was deposited, creating a carbonic paste with embedded nanoporous grains. Experimental results evidenced excellent broadband antireflection over the visible-near-infrared wavelength range (450-850 nm), with a diffuse reflectance value of 1.67% and 1.79%. Structural and optical characteristics stabilized over time. The results are promising for the accessible and cost-effective fabrication of an antireflective surface for optoelectronic devices.

13.
Expert Rev Med Devices ; 16(11): 931-940, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31622557

RESUMO

Introduction: Varicose veins are a common disease, causing significant impairment of quality of life to afflicted individuals. Conventional surgery has represented the traditional treatment for years, with significant post-operative complications. By the end of the 20th century, novel approaches had been developed to induce biochemical sclerosis into the treated vein in order to exclude it from blood circulation.Areas covered: Foaming techniques for treatment of varicose veins, both clinically-approved methods and those under experimental studies. A brief description of cavitation, which is the basis of microbubbles formation, and an overview of foam properties have been also provided, including a discussion on clinical efficacy and safety profile.Expert commentary: Foam sclerotherapy has rapidly gained popularity since it represents the most minimally invasive and cost-effective procedure in the short term. Several different methods of foam preparation have been described in literature. In general, the foam generation method may affect characteristics such as stability and bubble size distribution, which in turn affect the therapeutic action of foam itself. Therefore, the selection of a suitable foaming technique is of importance for treatment success. Future developments on foaming techniques are expected to make sclerotherapy, already an effective treatment, even safer and more versatile therapeutic procedure.


Assuntos
Eletrônica Médica/métodos , Varizes/terapia , Humanos , Escleroterapia , Resultado do Tratamento , Ultrassom
14.
Biosens Bioelectron ; 140: 111338, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158794

RESUMO

Evaluation of cellular thermodynamics has recently received a high interest because of its implication in many mechanisms related with function, structure and health of cells. Recent literature reported significant efforts to provide affordable intracellular thermal components of absorption, such as thermal conductivity, to overcome the lack of experimental data. Herein, we provide lines of evidence towards the fabrication of an electronic system, using a rapid thermoelectric technique based on infrared-induced pyroelectric effect for in-vitro cell model characterization. Results demonstrated that the assessment of the average single cell thermal conductivity, sample concentration, and information on cell viability is possible over a wide concentration range. The proposed electronic system establishes a different analysis paradigm if compared to those reported in the literature, with consistent results, demonstrating that the adopted technique can provide cell-specific information and knowledge, closely linked to cell viability and its vital functions.


Assuntos
Técnicas Biossensoriais/instrumentação , Sobrevivência Celular , Condutividade Térmica , Linhagem Celular , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Humanos , Raios Infravermelhos , Termodinâmica
15.
Sensors (Basel) ; 19(5)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832331

RESUMO

Extended-gate field-effect transistor (EGFET) is an electronic interface originally developed as a substitute for an ion-sensitive field-effect transistor (ISFET). Although the literature shows that commercial off-the-shelf components are widely used for biosensor fabrication, studies on electronic interfaces are still scarce (e.g., noise processes, scaling). Therefore, the incorporation of a custom EGFET can lead to biosensors with optimized performance. In this paper, the design and characterization of a transistor association (TA)-based EGFET was investigated. Prototypes were manufactured using a 130 nm standard complementary metal-oxide semiconductor (CMOS) process and compared with devices presented in recent literature. A DC equivalence with the counterpart involving a single equivalent transistor was observed. Experimental results showed a power consumption of 24.99 mW at 1.2 V supply voltage with a minimum die area of 0.685 × 1.2 mm². The higher aspect ratio devices required a proportionally increased die area and power consumption. Conversely, the input-referred noise showed an opposite trend with a minimum of 176.4 nVrms over the 0.1 to 10 Hz frequency band for a higher aspect ratio. EGFET as a pH sensor presented further validation of the design with an average voltage sensitivity of 50.3 mV/pH, a maximum current sensitivity of 15.71 mA1/2/pH, a linearity higher than 99.9%, and the possibility of operating at a lower noise level with a compact design and a low complexity.

16.
PLoS One ; 12(6): e0178900, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582461

RESUMO

Circulating oxidative stress and pro-inflammatory markers change after regular physical exercise; however, how a short session of acute physical activity affects the inflammatory status and redox balance in sedentary individuals is still unclear. Aim of this study is to assess antioxidant and inflammatory parameters, both at rest and after acute exercise, in sedentary young men with or without obesity. Thirty sedentary male volunteers, aged 20-45 (mean age 32 ± 7 years), were recruited, divided into 3 groups (normal weight: BMI < 25 kg/m2; overweight to moderate obesity: 25-35 kg/m2; severe obesity: 35-40 kg/m2), and their blood samples collected before and after a 20-min run at ~ 70% of their VO2max for the measurement of Glutathione Reductase, Glutathione Peroxidase, Superoxide Dismutase, Total Antioxidant Status (TAS) and cytokines (IL-2, IL-4, IL-6, IL-8, IL-10, IL-1α, IL-1ß, TNFα, MCP-1, VEGF, IFNγ, EGF). Inter-group comparisons demonstrated significantly higher Glutathione Reductase activity in severely obese subjects in the post-exercise period (P = 0.036), and higher EGF levels in normal weight individuals, either before (P = 0.003) and after exercise (P = 0.05). Intra-group comparisons showed that the acute exercise stress induced a significant increase in Glutathione Reductase activity in severely obese subjects only (P = 0.007), a significant decrease in MCP-1 in the normal weight group (P = 0.02), and a decrease in EGF levels in all groups (normal weight: P = 0.025, overweight/moderate obesity: P = 0.04, severe obesity: P = 0.018). Altogether, these findings suggest that in sedentary individuals with different ranges of BMI, Glutathione Reductase and distinct cytokines are differentially involved into the adaptive metabolic changes and redox responses induced by physical exercise. Therefore, these biomarkers may have the potential to identify individuals at higher risk for developing diseases pathophysiologically linked to oxidative stress.


Assuntos
Exercício Físico , Obesidade/sangue , Estresse Oxidativo , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Quimiocina CCL2/sangue , Fator de Crescimento Epidérmico/sangue , Jejum , Glutationa Peroxidase/sangue , Glutationa Redutase/sangue , Humanos , Interferon gama/sangue , Interleucinas/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Comportamento Sedentário , Índice de Gravidade de Doença , Superóxido Dismutase/sangue , Fator de Necrose Tumoral alfa/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
17.
Sensors (Basel) ; 17(4)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406447

RESUMO

This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

18.
IEEE Trans Biomed Eng ; 63(2): 379-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26208262

RESUMO

GOAL: Psoriasis is a chronic skin disease which is very common in the population and requires frequent clinical and pharmacological treatment. In the following, a study based on Fourier transform infrared spectroscopy analyzing saliva proteomic components in psoriatic patients against diabetic patients and a control group is presented. Clinical analysis showed a prominent amide II band, at around 1545 cm(-1), and the composition of the amide I band, at around 1647 cm(-1), allowing us to distinguish the infrared salivary signature of psoriatic and diabetic patients from the control group and even from patients with different kinds of psoriasis. Moreover, results highlighted existing differences in the secondary structure composition of proteins between psoriatic and diabetic patients as compared to the control group. In fact, the saliva spectra of the control group and that of the palmoplantar psoriatic patients differ from plaque psoriasis and diabetic patient spectra because of the absence of the amide II band and the presence of different secondary protein-structure conformations.


Assuntos
Diabetes Mellitus/metabolismo , Psoríase/metabolismo , Saliva/química , Espectrofotometria Infravermelho/métodos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Proteínas e Peptídeos Salivares/análise , Proteínas e Peptídeos Salivares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA