Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2776: 89-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502499

RESUMO

Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.


Assuntos
Mitocôndrias , Plastídeos , Plastídeos/metabolismo , Mitocôndrias/genética
2.
Methods Mol Biol ; 2776: 289-302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502512

RESUMO

Excluding the few dozen proteins encoded by the chloroplast and mitochondrial genomes, the majority of plant cell proteins are synthesized by cytosolic ribosomes. Most of these nuclear-encoded proteins are then targeted to specific cell compartments thanks to localization signals present in their amino acid sequence. These signals can be specific amino acid sequences known as transit peptides, or post-translational modifications, ability to interact with specific proteins or other more complex regulatory processes. Furthermore, in eukaryotic cells, protein synthesis can be regulated so that certain proteins are synthesized close to their destination site, thus enabling local protein synthesis in specific compartments of the cell. Previous studies have revealed that such locally translating cytosolic ribosomes are present in the vicinity of mitochondria and emerging views suggest that localized translation near chloroplasts could also occur. However, in higher plants, very little information is available on molecular mechanisms controlling these processes and there is a need to characterize cytosolic ribosomes associated with organelles membranes. To this goal, this protocol describes the purification of higher plant chloroplast and mitochondria and the organelle-associated cytosolic ribosomes.


Assuntos
Cloroplastos , Ribossomos , Citosol/metabolismo , Cloroplastos/metabolismo , Ribossomos/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA