Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ecol Evol ; 14(10): e70421, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39410962

RESUMO

Reproductive traits that mediate differential fitness associated with mate acquisition and fertilisation success are often strongly linked to the overall condition. We investigated the effects of resource quality and parental provisioning in the phenotypic expression of sexual and non-sexual traits in a rainforest dung beetle, Onthophagus c.f. babirussa (Eschscholtz, 1822) from Singapore. F1 individuals were reared from wild-caught beetles and paired up to produce offspring (F2), and F2 larvae from the same F1 parents were reared on two dung substrates (herbivore and omnivore) in a full-sib design. Sexual traits displayed greater phenotypic variation in response to dung resource quality, with the precopulatory trait (horn length) responding more than the postcopulatory trait (testes weight). Notably, genotype-by-environment interactions between parental lines (genotype) and dung type (environment) affected male body size and horn length only, suggesting sex-specific variance in plasticity associated with sexually selected precopulatory traits. Dung type had significant effects on all measured traits. Offspring that were provisioned higher quality resource (omnivore dung) had larger absolute and relative trait values. Parental lines only significantly affected female body size but none of the male traits, suggesting an important role of environment and resource partitioning in determining precopulatory success of male offspring. Parental provisioning of larval resource varied with resource quality and brood sequence. Parents provisioned more dung when herbivore dung was presented than when they were given omnivore dung and provisioned more dung for their earlier broods when using herbivore dung but not omnivore dung. This suggests a trade-off between early offspring fitness and resource quality. We tested directly for genotype-by-environment (G × E) interactions in the expression of several morphological traits relevant to dung beetle fitness and documented that offspring with similar phenotypes may result from completely different parental resource allocation strategies. We discuss the importance of studying parental investment on trait variation and its implications on dung beetle ecology.

2.
Anim Microbiome ; 6(1): 56, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407272

RESUMO

BACKGROUND: The gut microbiota of black soldier fly larvae (BSFL, Hermetia illucens) play a crucial role in recycling various organic waste streams. This capability is linked to the presence of a potential common core microbiota in BSFL. However, subjective thresholds for defining core taxa and the difficulty of separating genetic and environmental influences have prevented a clear consensus in the literature. We analysed the gut bacterial communities of two genetically distinct BSF lines (wild type (WT) and lab-adapted line (LD)) raised on ten different diets based on common agricultural by-products and food waste in Southeast Asia. RESULTS: High-throughput 16S rRNA gene sequencing revealed that gut bacterial communities were significantly influenced by genetics (p = 0.001), diet (plant/meat-dominated; p = 0.001), larval age (p = 0.001), and the interactions between all three (p = 0.002). This led us to investigate both common core taxa and lineage-specific core taxa. At a strict > 97% prevalence threshold, four core taxa were identified: Providencia_A_732258, an unclassified genus within the family Enterococcaceae, Morganella, and Enterococcus_H_360604. A relaxed threshold (> 80% prevalence) extended the core to include other potential common core taxa such as Klebsiella, Proteus, and Scrofimicrobium. Our data suggest that Proteus, Scrofimicrobium, Corynebacterium, Vagococcus_B, Lysinibacillus_304693 (all LD), and Paenibacillus_J_366884 (WT) are lineage-specific rather than members of a common core (> 90% prevalence in either LD or WT, with prevalence significantly different between lines (p ≤ 0.05)). Positive correlations were observed between several core genera and larval performance in LD, typical of a highly optimized lab-adapted line. Interestingly, only members of the genus Providencia appeared to play a crucial role in most aspects of larval performance in both genetic lineages. CONCLUSION: Our study demonstrates that the gut microbiota of BSFL is influenced by genetic factors, diet composition, larval age, and their interactions. We identified a distinct lineage-specific core microbiota, emphasizing genetic background's role. Future studies should apply a standardized high prevalence threshold of at least > 90% unless there is a valid reason for relaxation or sample exclusion. The consistent association of Providencia spp. with larval performance across both genetic lines highlights their crucial role in the BSFL gut ecosystem.

3.
Infect Genet Evol ; 123: 105647, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067583

RESUMO

Mosquitoes are medically important insects, and accurate species identification is crucial to understanding vector biology, forming the cornerstone of successful vector control programs. Identification is difficult owing to morphologically similar species. Wing morphometrics can provide a simple, fast, and accurate way to classify species, and using it as a method to differentiate vector species among its cryptic congeners has been underexplored. Using a total of 227 mosquitoes and 20 landmarks per specimen, we demonstrated the utility of wing morphometrics in differentiating species two groups occurring in sympatry - Culex (Culex) vishnui group and Culex (Lophoceraomyia) subgenus, as well as explored population-level variation in the wing shape of Aedes albopictus across habitats. Cytochrome oxidase subunit I (COI) gene region was sequenced to validate the morphological and morphometric identification. Procrustes ANOVA regression and CVA based on wing shape reflected that the wing landmarks across all species differed significantly, and leave-one-out cross validation revealed an overall high accuracy of >97% for the two Culex groups. Wing morphometrics uncovered population-level variation within Aedes albopictus, but cross validation accuracy was low. Overall, we show that wing geomorphometric analysis is able to resolve cryptic Culex species (including vectors) occurring sympatrically, and is a robust tool for identifying mosquitoes reliably.


Assuntos
Asas de Animais , Animais , Asas de Animais/anatomia & histologia , Mosquitos Vetores/anatomia & histologia , Aedes/anatomia & histologia , Aedes/genética , Aedes/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Culicidae/anatomia & histologia , Culicidae/classificação , Filogenia , Culex/anatomia & histologia , Culex/classificação , Culex/genética , Especificidade da Espécie
4.
Behav Processes ; 220: 105073, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917938

RESUMO

Exaggerated sexual traits, such as ornaments and courtship displays, are crucial for mate acquisition in many species and are often subject to directional runaway selection. However, in the face of high predation risk, natural selection can result in a reduction of conspicuous precopulatory displays to avoid detection by potential predators. Sexual selection may then favour increased investment in inconspicuous postcopulatory traits. Here, we investigated the transgenerational effects of predation on precopulatory male courtship and postcopulatory sexual traits (testes size, sperm length) in a dung fly, Sepsis punctum (Sepsidae). Behavioural assays prior to selection document a marked decrease in male courtship displays in the presence of a predator, the Asian Ant Mantis (Odontomantis planiceps). However, after ten generations of experimental evolution, flies exhibited a marked increase in courtship, both in the absence and presence of a predator. Additionally, under sustained predation pressure, male and female body size decreased but male postcopulatory traits were not significantly affected. These results suggest that precopulatory courtship can be under strong sexual selection even in the face of predation pressure. Larger flies were more susceptible to predation, and there could be canalisation of postcopulatory traits that are crucial for fertilisation.


Assuntos
Evolução Biológica , Tamanho Corporal , Corte , Dípteros , Comportamento Predatório , Comportamento Sexual Animal , Animais , Masculino , Tamanho Corporal/fisiologia , Comportamento Predatório/fisiologia , Feminino , Dípteros/fisiologia , Comportamento Sexual Animal/fisiologia , Seleção Sexual/fisiologia , Mantódeos/fisiologia
5.
J Sci Food Agric ; 104(3): 1521-1530, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819625

RESUMO

BACKGROUND: The black soldier fly (BSF) offers a potential solution to address shortages of feed and food sources; however, selecting effective rearing substrates remains a major hurdle in BSF farming. In an urban area like Singapore, current practice is based on rearing BSF on homogeneous waste streams (e.g., spent brewery grains or okara) because heterogeneous food wastes (e.g., mixed kitchen/canteen waste or surplus cooked food) present several operational challenges with respect to the standardization of development, nutritional content, and harvesting. RESULTS: In this study, we compared two genetic strains of BSF larvae (wild-type and laboratory-adapted line) in a bioconversion experiment with diverse types of food waste (homogeneous/heterogeneous; plant/meat) and we quantified the phenotypic plasticity. Our results demonstrate different plasticity in bioconversion performance, larval growth and larval nutrition between the two BSF lines. This difference may be attributed to the selective breeding the laboratory-adapted line has experienced. Notably, larval lipid content displayed little to no genetic variation for plasticity compared with larval protein and carbohydrate content. Despite variation in larval development, heterogeneous food wastes can produce better performance in bioconversion, larval growth, and larval nutrient content than homogeneous food waste. All-meat diets result in high larvae mortality but larval survival could be rescued by mixing meat with plant-based food wastes. CONCLUSION: Overall, we suggest using mixed meals for BSF larvae feeding. Targeted breeding may be a promising strategy for the BSF industry but it is important to consider the selection effects on plasticity in larval nutrition carefully. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Dípteros , Eliminação de Resíduos , Animais , Alimentos , Perda e Desperdício de Alimentos , Larva
6.
iScience ; 26(9): 107577, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680477

RESUMO

Aedes albopictus is a successful disease vector due to its ability to survive in a wide range of habitats. Despite its ubiquity and impact on public health, little is known about its differential gene flow capabilities across different city habitats. We obtained a comprehensive dataset of >27,000 genome-wide DNA markers across 105 wild-caught Ae. albopictus individuals from Singapore, a dengue-endemic tropical city with heterogeneous landscapes from densely populated urban areas to forests. Despite Singapore's challenging small-scale heterogeneity, our landscape-genomic approach indicated that dense urban areas are characterized by higher Aedes gene flow rates than managed parks and forests. We documented the incidence of Wolbachia infections of Ae. albopictus involving two strains (wAlbA and wAlbB). Our results dispel the misconception that substantial dispersal of Ae. albopictus is limited to urban greenery, with wide implications for vector management and critical insights into urban planning strategies to combat dengue transmission.

7.
Proc Biol Sci ; 290(1998): 20222531, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132233

RESUMO

Male sexual ornaments often evolve rapidly and are thought to be costly, thus contributing to sexual size dimorphism. However, little is known about their developmental costs, and even less about costs associated with structural complexity. Here, we quantified the size and complexity of three morphologically elaborate sexually dimorphic male ornaments that starkly differ across sepsid fly species (Diptera: Sepsidae): (i) male forelegs range from being unmodified, like in most females, to being adorned with spines and large cuticular protrusions; (ii) the fourth abdominal sternites are either unmodified or are converted into complex de novo appendages; and (iii) male genital claspers range from small and simple to large and complex (e.g. bifurcated). We tracked the development of 18 sepsid species from egg to adult to determine larval feeding and pupal metamorphosis times of both sexes. We then statistically explored whether pupal and adult body size, ornament size and/or ornament complexity are correlated with sex-specific development times. Larval growth and foraging periods of male and female larvae did not differ, but the time spent in the pupal stage was ca 5% longer for sepsid males despite emerging 9% smaller than females on average. Surprisingly, we found no evidence that sexual trait complexity prolongs pupal development beyond some effects of trait size. Evolving more complex traits thus does not incur developmental costs at least in this system.


Assuntos
Dípteros , Animais , Masculino , Feminino , Dípteros/anatomia & histologia , Caracteres Sexuais , Evolução Biológica , Larva , Tamanho Corporal , Pupa
8.
Front Genet ; 13: 1003771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568389

RESUMO

Gene discovery has important implications for investigating phenotypic trait evolution, adaptation, and speciation. Male reproductive tissues, such as accessory glands (AGs), are hotspots for recruitment of novel genes that diverge rapidly even among closely related species/populations. These genes synthesize seminal fluid proteins that often affect post-copulatory sexual selection-they can mediate male-male sperm competition, ejaculate-female interactions that modify female remating and even influence reproductive incompatibilities among diverging species/populations. Although de novo transcriptomics has facilitated gene discovery in non-model organisms, reproductive gene discovery is still challenging without a reference database as they are often novel and bear no homology to known proteins. Here, we use reference-free GridION long-read transcriptomics, from Oxford Nanopore Technologies (ONT), to discover novel AG genes and characterize their expression in the widespread dung fly, Sepsis punctum. Despite stark population differences in male reproductive traits (e.g.: Body size, testes size, and sperm length) as well as female re-mating, the male AG genes and their secretions of S. punctum are still unknown. We implement a de novo ONT transcriptome pipeline incorporating quality-filtering and rigorous error-correction procedures, and we evaluate gene sequence and gene expression results against high-quality Illumina short-read data. We discover highly-expressed reproductive genes in AG transcriptomes of S. punctum consisting of 40 high-quality and high-confidence ONT genes that cross-verify against Illumina genes, among which 26 are novel and specific to S. punctum. Novel genes account for an average of 81% of total gene expression and may be functionally relevant in seminal fluid protein production. For instance, 80% of genes encoding secretory proteins account for 74% total gene expression. In addition, median sequence similarities of ONT nucleotide and protein sequences match within-Illumina sequence similarities. Read-count based expression quantification in ONT is congruent with Illumina's Transcript per Million (TPM), both in overall pattern and within functional categories. Rapid genomic innovation followed by recruitment of de novo genes for high expression in S. punctum AG tissue, a pattern observed in other insects, could be a likely mechanism of evolution of these genes. The study also demonstrates the feasibility of adapting ONT transcriptomics for gene discovery in non-model systems.

9.
Ecol Evol ; 12(9): e9279, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177114

RESUMO

Sexual size dimorphism (SSD) arises when natural selection and sexual selection act differently on males and females. Male-biased SSD is rarer in insects and usually indicates strong sexual selection pressure on male body size in a species. Patterns of SSD can also vary between populations of species that are exposed to different environmental conditions, such as differing resource availability and diversity. Here, we investigate intraspecific variation in SSD as well as relative investment in precopulatory (horn length) and postcopulatory traits (sperm length and testes weight) in a tropical rainforest dung beetle Onthophagus babirussa across Singapore and Peninsular Malaysia. Overall, three out of four populations displayed significant male-biased SSD, and SSD was greater in populations with smaller overall body size. Average male body size was similar across all populations while female body size was significantly smaller in Singapore, suggesting that the pronounced SSD may also be due to stronger sexual selection on male body size in Singapore populations. All populations showed significant investment in horns as a weapon likely used in male-male competition, while postcopulatory traits showed no clear scaling relationship with body size, suggesting a higher priority on precopulatory sexual traits in the mating system of this species.

10.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34426833

RESUMO

The molecular basis for the evolution of novel phenotypes is a central question in evolutionary biology. In recent years, dung beetles have emerged as models for novel trait evolution as they possess distinct precopulatory traits such as sexually dimorphic horns on their head and thorax. Here, we use functional and evolutionary genomics to investigate the origins and the evolution of postcopulatory reproductive traits in male dung beetles. Male ejaculates that underlie postcopulatory sexual selection are excellent candidates to study novel trait evolution as they are complex, fast evolving, and often highly divergent in insects. We assemble de novo transcriptomes of male accessory glands and testes of a widespread dung beetle, Catharsius molossus, and we perform an evolutionary analysis of closely and distantly related insect genomes. Our results show there is rapid innovation at the genomic level even among closely related dung beetles. Genomic expansion and contraction drive the divergence of male reproductive traits and their functions. The birth of scores of completely novel reproductive genes is reinforced by the recruitment of these genes for high expression in male reproductive tissues, especially in the accessory glands. We find that male accessory glands of C. molossus are specialized for secretory function and express female, egg, and embryo-related genes as well as serine protease inhibitors, whilst the testes are specialized for spermatogenesis and sperm function. Finally, we touch upon putative functions of these evolutionary novelties using structure-function analysis as these proteins bear no homology to any other known proteins.


Assuntos
Besouros , Animais , Evolução Biológica , Besouros/genética , Evolução Molecular , Feminino , Genoma , Genômica , Masculino , Reprodução/genética
11.
Parasit Vectors ; 13(1): 612, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298138

RESUMO

BACKGROUND: Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the influence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous studies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. METHODS: We conducted tissue-specific polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecular marker. Mosquito-Wolbachia associations were explored using three methods-tanglegram, distance-based, and event-based methods-and by inferred instances of vertical transmission and host shifts. RESULTS: Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including five in the genus Aedes and five in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugnomyia gracilis. Wolbachia were predominantly detected in the reproductive tissues, which is an indication of vertical transmission. However, Wolbachia infection rates varied widely within a mosquito host species. There was no clear signal of cophylogeny between the mosquito hosts and the 12 putative Wolbachia strains observed in this study. Host shift events were also observed. CONCLUSIONS: Our results suggest that the mosquito-Wolbachia relationship is complex and that combinations of transmission modes and multiple evolutionary events likely explain the observed distribution of Wolbachia diversity across mosquito hosts. These findings have implications for a better understanding of the diversity and ecology of Wolbachia and for their utility as biocontrol agents.


Assuntos
Infecções por Anaplasmataceae/microbiologia , Infecções por Anaplasmataceae/transmissão , Culicidae/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Mosquitos Vetores/microbiologia , Aedes/genética , Aedes/microbiologia , Animais , Evolução Biológica , Culex/genética , Culex/microbiologia , DNA Bacteriano , Feminino , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência , Singapura , Doenças Transmitidas por Vetores , Wolbachia/classificação , Wolbachia/genética
12.
J Evol Biol ; 33(3): 297-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31701605

RESUMO

Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male-male competition. We predicted that populations subject to increased male-male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male-biased SSD in both species, which was not evident in conspecific populations with female-biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.


Assuntos
Evolução Biológica , Tamanho Corporal/fisiologia , Dípteros/anatomia & histologia , Dípteros/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Seleção Sexual/fisiologia , Animais , Feminino , Masculino , Herança Multifatorial
13.
Evolution ; 70(6): 1189-99, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27168489

RESUMO

Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro- and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra- and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female-biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male-biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.


Assuntos
Evolução Biológica , Tamanho Corporal , Dípteros/fisiologia , Preferência de Acasalamento Animal , Animais , Europa (Continente) , Feminino , Fertilidade , Masculino , Caracteres Sexuais , Estados Unidos
14.
Nature ; 533(7604): 535-8, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225128

RESUMO

Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.


Assuntos
Evolução Biológica , Tamanho Celular , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Preferência de Acasalamento Animal/fisiologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Animais , Comportamento Competitivo/fisiologia , Copulação/fisiologia , Drosophila melanogaster/classificação , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Masculino , Óvulo/citologia , Óvulo/fisiologia , Fenótipo , Caracteres Sexuais
15.
J Therm Biol ; 46: 1-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25455934

RESUMO

Thermal tolerance varies at all hierarchical levels of biological organization: among species, populations, individuals, and even within individuals. Age- or developmental stage- and sex-specific thermal effects have received relatively little attention in the literature, despite being crucial for understanding thermal adaptation in nature and responses to global warming. We document stage- and sex- specific heat tolerance in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), a species common throughout the northern hemisphere that generally favours cool climates. Exposure of eggs to temperatures up to 32°C did not affect larval hatching rate, but subsequent egg-to-adult survival at a benign temperature was reduced. Permanent transfer from benign (18°C) to hot temperatures (up to 31°C) at different larval and pupal stages strongly decreased egg-to-adult survival, though survival continuously improved the later the transfer occurred. Temporary transfer for only two days increased mortality more weakly, survival being lowest when temperature stress was imposed early during the larval or pupal stages. Adult flies provided with sugar and water tolerated 31°C longer than previously thought (5 days in males to 9 days in females). Eggs were thus less susceptible to thermal stress than larvae, pupae or adults, in agreement with the hypothesis that more mobile stages require less physiological protection against heat because they can behaviourally thermoregulate. The probability of mating, of laying a clutch, and hatching success were generally independently reduced by exposure of females or males to warm temperatures (24°C) during the juvenile or adult stages, with some interactions evident. High temperature stress thus affects survival differentially depending on when it occurs during the juvenile or the pre-reproductive adult life stage, and affects reproductive success via the mating behaviour of both sexes, female physiology in terms of oviposition, and fertility via sperm and/or egg quality. Our results illustrate that temperature stress, even when moderate and temporary, during early development can have profound lethal and non-lethal fitness-consequences later in life.


Assuntos
Dípteros/fisiologia , Temperatura Alta , Animais , Regulação da Temperatura Corporal/fisiologia , Feminino , Larva/fisiologia , Masculino , Pupa/fisiologia , Fatores Sexuais
16.
Evol Appl ; 7(5): 548-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24944568

RESUMO

Avermectins are potent and popular veterinary pharmaceuticals used globally to fight parasites of livestock and humans. By disturbing ion channel transport through the membrane, avermectins are effective against endo- and ectoparasitic round and horsehair worms (Nematoida), insects, or ticks (Arthropoda), but not against Plathelminthes, including flatworms (Trematoda) and tapeworms (Cestoda), or segmented worms (Annelida). Unfortunately, excreted avermectins have strong nontarget effects on beneficial arthropods such as the insect community decomposing livestock dung, ultimately impeding this important ecosystem function to the extent that regulators mandate standardized eco-toxicological tests of dung organisms worldwide. We show that the ancient phylogenetic pattern and qualitative mechanism of avermectin sensitivity is conserved and compatible with most recent phylogenomic hypotheses grouping the Nematoida with the Arthropoda as Ecdysozoa (molting animals). At the species level, we demonstrate phylogenetic clustering in ivermectin sensitivities of 23 species of sepsid dung flies (Diptera: Sepsidae). This clustered 500-fold quantitative variation in sensitivity may indicate recent lineage-specific responses to selection, but more likely reflects pre-existing genetic variation with pleiotropic effects on eco-toxicological responses to pollutants. Regardless, our results question the common practice in eco-toxicology of choosing single test species to infer detrimental effects on entire species communities, which should ideally assess a representative taxonomic sample.

17.
J Insect Sci ; 13: 47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23909372

RESUMO

Maternally transmitted reproductive parasites such as Wolbachia and Cardinium can drastically reshape reproduction in their hosts. Beyond skewing sex ratios towards females, these microbes can also cause cytoplasmic incompatibility. Wolbachia probably infects two thirds of insects, but far less is known about the occurrence or action of other bacteria with potentially similar effects. In contrast with the two more widespread reproductive parasites, Wolbachia and Spiroplasma, far less is known of infections with Cardinium (Bacteroidetes) and possible consequences in the Diptera. Here, in an extensive survey, 244 dipteran species from 67 genera belonging to the Dolichopodidae, Empididae, and Hybotidae were assessed for the presence of the microbe Cardinium. Although 130 of the species screened tested positive (ca. 53%), the presence of Cardinium could only be confirmed in 10 species (ca. 4%) based on analysis of sequences. Numerous additional sequences were found to be assignable to known or unknown Bacteroidetes. Considering the known issues concerning specificity of Cardinium primers and the phylogenetic uncertainties surrounding this microbe, the actual prevalence of this symbiont is worthy of further scrutiny. Potential directions for future research on Cardinium-host interactions in Diptera and in general are discussed.


Assuntos
Bacteroidetes/isolamento & purificação , Dípteros/microbiologia , Animais , Simbiose
18.
Ecotoxicol Environ Saf ; 89: 15-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23273869

RESUMO

A standardized bioassay previously developed with ivermectin for the yellow dung fly (Scathophagidae) and the face fly (Muscidae) was applied to test the response of 11 dung fly species to the presumably less toxic parasiticide moxidectin. The results were compared to existing data for the same species tested with ivermectin, albeit two new species (Scathophaga suilla and Musca domestica) were tested here with both the substances. Estimated lethal effect concentrations LC50 at which 50% of the flies died ranged more than tenfold from 0.012 mg moxidectin/kg fresh dung for Sepsis neocynipsea (Sepsidae) to 0.140 mg moxidectin/kg fresh dung for the house fly Musca domestica (Muscidae). In most of the species, we additionally revealed sub-lethal effects at lower moxidectin concentrations in terms of retarded growth and development and reduced body size. Mortality thresholds were about ten times higher for moxidectin than for ivermectin, hence moxidectin is indeed less toxic than ivermectin in absolute terms. Crucially, we obtained strong correlations among the 11 tested fly species in both lethal and sub-lethal responses to the two substances, such that species relatively sensitive to ivermectin were also relatively sensitive to moxidectin. Such correlations are expected if the two substances are structurally related and function in the same manner by disturbing ion channel transport. Methodologically speaking, all species used proved suitable for toxicological testing of parasiticides.


Assuntos
Antiparasitários/toxicidade , Dípteros/efeitos dos fármacos , Ivermectina/toxicidade , Macrolídeos/toxicidade , Animais , Bioensaio , Tamanho Corporal/efeitos dos fármacos , Fezes/química , Dose Letal Mediana
19.
Ecotoxicol Environ Saf ; 89: 21-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23260241

RESUMO

Veterinary pharmaceuticals excreted in the dung of treated livestock can have strong non-target effects on the dung organism community. We report results of ecotoxicological tests with ivermectin for 21 species of temperate (Europe, North America) and tropical (Asia, Central America) black scavenger flies (Diptera: Sepsidae), using standardized methods developed previously for the yellow dung fly and the face fly. Our study documents great variation in ivermectin sensitivity of more than two orders of magnitude among species and even populations within species: estimated lethal effect concentrations LC(50) (at which 50% of the flies died) ranged from 0.05 to 18.55 µg/kg dung fresh weight (equivalent to 0.33-132.22 µg/kg dung dry weight). We also show that controlled laboratory tests can--within reasonable limits-be extended to the field or to laboratory settings without climate control, as obtained LC(50) were roughly similar. In addition to lethal effects, our study revealed relevant sub-lethal effects at lower ivermectin concentrations in terms of prolonged development, smaller body size and reduced juvenile growth rate. Finally, oviposition choice experiments showed that females generally do not discriminate against dung containing ivermectin residues. We conclude that sepsid flies are well suited test organisms for pharmaceutical residues in the dung of livestock due to their ease and speed of rearing and handling, particularly in the tropics, where high-tech laboratory equipment is often not available.


Assuntos
Bioensaio/métodos , Bioensaio/normas , Dípteros/efeitos dos fármacos , Ecotoxicologia/métodos , Ivermectina/análise , Ivermectina/toxicidade , Drogas Veterinárias/análise , Animais , Bovinos , Fezes/química , Feminino , Dose Letal Mediana , Oviposição/efeitos dos fármacos
20.
Infect Genet Evol ; 13: 317-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23183308

RESUMO

Vertically transmitted reproductive parasites are both extraordinarily widespread and diverse in their effects on their invertebrate hosts. In addition to causing skewed population sex ratios via male-killing or feminization, such bacteria can further cause cytoplasmic incompatibility or parthenogenesis. Previous surveys show that the microbes Wolbachia and Spiroplasma are common in some dipteran families, e.g. Drosophilidae or Scathophagidae, and are known to be heritable symbionts and affect reproduction in the Diptera. However, little is known of Rickettsia infections and detailed surveys targeting other Dipteran families are lacking. Here 329 samples of 247 species of Diptera belonging to the Dolichopodidae, Empididae, and Hybotidae (superfamily Empidoidea) are surveyed for the presence of the endosymbionts Wolbachia, Spiroplasma, and Rickettsia. The superfamily Empidoidea contains numerous species, which have been the targets of intense research concerning reproductive traits involved in sexual selection. 151 of the species (i.e. ca. 61%) screened here, including species from key genera such as Dolichopus, Poecilobothrus or Empis, harboured one or more symbionts. Reproductive parasites are thus also common in the Empidoidae, yet effects on hosts remain unclear. Potential endosymbiont-host interactions in this group would hence be worthy of further investigation.


Assuntos
Dípteros/microbiologia , Rickettsia/genética , Spiroplasma/genética , Wolbachia/genética , Animais , DNA Bacteriano , Masculino , Dados de Sequência Molecular , Filogenia , Rickettsia/classificação , Spiroplasma/classificação , Simbiose , Wolbachia/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA