Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 9: 19, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243131

RESUMO

During the past two decades, the technological progress of whole-genome sequencing (WGS) had changed the fields of Environmental Microbiology and Biotechnology, and, currently, is changing the underlying principles, approaches, and fundamentals of Public Health, Epidemiology, Health Economics, and national productivity. Today's WGS technologies are able to compete with conventional techniques in cost, speed, accuracy, and resolution for day-to-day control of infectious diseases and outbreaks in clinical laboratories and in long-term epidemiological investigations. WGS gives rise to an exciting future direction for personalized Genomic Epidemiology. One of the most vital and growing public health problems is the emerging and re-emerging of multidrug-resistant (MDR) bacterial infections in the communities and healthcare settings, reinforced by a decline in antimicrobial drug discovery. In recent years, retrospective analysis provided by WGS has had a great impact on the identification and tracking of MDR microorganisms in hospitals and communities. The obtained genomic data are also important for developing novel easy-to-use diagnostic assays for clinics, as well as for antibiotic and therapeutic development at both the personal and population levels. At present, this technology has been successfully applied as an addendum to the real-time diagnostic methods currently used in clinical laboratories. However, the significance of WGS for public health may increase if: (a) unified and user-friendly bioinformatics toolsets for easy data interpretation and management are established, and (b) standards for data validation and verification are developed. Herein, we review the current and future impact of this technology on diagnosis, prevention, treatment, and control of MDR infectious bacteria in clinics and on the global scale.


Assuntos
Bactérias/genética , Infecções Bacterianas/genética , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/efeitos dos fármacos , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Resistência a Múltiplos Medicamentos/genética , Genoma Bacteriano , Humanos , Análise de Sequência de DNA
2.
Acta Naturae ; 5(1): 90-100, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23556134

RESUMO

The Bacillus cereus group consists of closely related species of bacteria and is of interest to researchers due to its importance in industry and medicine. However, it remains difficult to distinguish these bacteria at the intra- and inter-species level. Bacillus thuringiensis (Bt) is a member of the B. cereus group. In this work, we studied the inter-species structure of five entomopathogenic strains and 20 isolates of Bt, which were collected from different geo-ecological regions of Ukraine, using various methods: physiological and biochemical analyses, analysis of the nucleotide sequences of the 16S rRNA and gyrB genes, by AP-PCR (BOX and ERIC), and by saAFLP. The analysis of the 16S rRNA and gyrB genes revealed the existence of six subgroups within theB.cereus group: B anthracis, B. cereus I and II, Bt I and II, and Bt III, and confirmed that these isolates belong to the genus Bacillus. All strains were subdivided into 3 groups. Seventeen strains belong to the group Bt II of commercial, industrial strains. The AP-PCR (BOX and ERIC) and saAFLP results were in good agreement and with the results obtained for the 16S rRNA and gyrB genes. Based on the derived patterns, all strains were reliably combined into 5 groups. Interestingly, a specific pattern was revealed by the saAFLP analysis for the industrial strain Bt 0376 р.о., which is used to produce the entomopathogenic preparation "STAR-t".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA